Skip to main content

How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 562))

Abstract

The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein’s gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-afine gravity.— A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell’s equations expressed in terms of the excitation H = (D,H) and the field strength F = (E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H = functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebaśki), linear ones, including the Abelian axion (Ni), and fid a method for deriving the metric from linear electrodynamics (Toupin, Schönberg). Finally, we discuss possible non-minimal coupling schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Abbott et al. (D0 Collaboration), A search for heavy pointlike Dirac monopoles, Phys. Rev. Lett. 81 (1998) 524–529.

    Article  ADS  Google Scholar 

  2. E. Ayón-Beato and A. García, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056–5059.

    Article  ADS  Google Scholar 

  3. E. Ayón-Beato and A. García, Non-singular charged black hole solution for nonlinear source, Gen. Rel. Grav. J. 31 (1999) 629–633.

    Article  MATH  ADS  Google Scholar 

  4. E. Ayón-Beato and A. García, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B464 (1999) 25–29.

    ADS  Google Scholar 

  5. I.M. Benn, T. Dereli, and R.W. Tucker, Gauge field interactions in spaces with arbitrary torsion, Phys. Lett. B96 (1980) 100–104.

    ADS  MathSciNet  Google Scholar 

  6. M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. (London) A144 (1934) 425–451.

    Google Scholar 

  7. C.H. Brans, Complex 2-forms representation of the Einstein equations: The Petrov Type III solutions, J. Math. Phys. 12 (1971) 1616–1619.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. H.A. Buchdahl, On a Lagrangian for non-minimally coupled gravitational and electromagnetic fields, J. Phys. A12 (1979) 1037–1043.

    ADS  Google Scholar 

  9. R. Capovilla, T. Jacobson, and J. Dell, General relativity without the metric, Phys. Rev. Lett. 63 (1989) 2325–2328.

    Article  ADS  MathSciNet  Google Scholar 

  10. S.M. Carroll, G.B. Field, and R. Jackiw, Limits on a Lorentz-and parity-violating modification of electrodynamics, Phys. Rev. D41 (1990) 1231–1240.

    ADS  Google Scholar 

  11. C. Caso et al. (Particle Data Group), European Phys. J. C3 (1998) 1–794 and 1999 partial update for edition 2000 (ULR: http://pdg.lbl.gov), here: Axions and other Very Light Bosons.

    Google Scholar 

  12. L. Cooper and G.E. Stedman, Axion detection by ring lasers, Phys. Lett. B357 (1995) 464–468.

    ADS  Google Scholar 

  13. H. Dehmelt, R. Mittleman, R.S. van Dyck, Jr., and P. Schwinberg, Past electron positron g-2 experiments yielded sharpest bound on CPT violation, Phys. Rev. Lett. 83 (1999) 4694–4696.

    Article  ADS  Google Scholar 

  14. V.C. de Andrade, J.G. Pereira, Torsion and the electromagnetic field, Int. J. Mod. Phys. D8 (1999) 141–151.

    ADS  Google Scholar 

  15. R. de Ritis, M. Lavorgna, and C. Stornaiolo, Geometric optics in a Riemann-Cartan space-time, Phys. Lett. A98 (1983) 411–413.

    ADS  Google Scholar 

  16. V. de Sabbata and C. Sivaram, Spin and Torsion in Gravitation. Singapore, World Scientific (1994).

    MATH  Google Scholar 

  17. I.T. Drummond and S.J. Hathrell, QED vacuum polarization in a background gravitational field and its effect on the velocity of photons, Phys. Rev. D22 (1980) 343–355.

    ADS  MathSciNet  Google Scholar 

  18. A.S. Eddington, The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1924) Sec.74(b).

    MATH  Google Scholar 

  19. A. Einstein, Eine neue formale Deutung der Maxwellschen Feldgleichungen der Elektrodynamik, Sitzungsber. Königl. Preuss. Akad. Wiss. (Berlin) (1916) pp. 184–188; see also The Collected Papers of Albert Einstein. Vol.6, A.J. Kox et al., eds. (1996) pp. 263-269.

    Google Scholar 

  20. A. Einstein, The Meaning of Relativity, 5th edition. Princeton University Press, Princeton (1955).

    MATH  Google Scholar 

  21. T. Frankel, The Geometry of Physics-An Introduction. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  22. G.W. Gibbons and D.A. Rasheed, Magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B454 (1995) 185–206.

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Goenner, Theories of gravitation with nonminimal coupling of matter and the gravitational field, Found. Phys. 14 (1984) 865–881.

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Gordon, Zur Lichtfortpflanzung nach der Relativitätstheorie, Ann. Phys. (Leipzig) 72 (1923) 421–456.

    ADS  Google Scholar 

  25. F. Gronwald and F. W. Hehl, On the gauge aspects of gravity, in: International School of Cosmology and Gravitation: 14th Course: Quantum Gravity, held May 1995 in Erice, Italy. Proceedings. P.G. Bergmann et al. (eds.). World Scientific, Singapore (1996) pp. 148–198. Los Alamos Eprint Archive, gr-qc/9602013.

    Google Scholar 

  26. G. Harnett, Metrics and dual operators, J. Math. Phys. 32 (1991) 84–91.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. D. Hartley: Normal frames for non-Riemannian connections, Class. Quantum Grav. 12 (1995) L103–L105.

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Haugan and C. Lämmerzahl, On the experimental foundations of the Maxwell equations, Ann. Physik (Leipzig), to be published (2000).

    Google Scholar 

  29. Y.D. He, Search for a Dirac magnetic monopole in high energy nucleus-nucleus collisions, Phys. Rev. Lett. 79 (1997) 3134–3137.

    Article  ADS  Google Scholar 

  30. F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48 (1976) 393–416.

    Article  ADS  Google Scholar 

  31. F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne'eman, Metric-afine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep. 258 (1995) 1–171.

    Article  ADS  MathSciNet  Google Scholar 

  32. F.W. Hehl, Yu.N. Obukhov, and G.F. Rubilar, Classical electrodynamics: A Tutorial on its Foundations, in: Quo vadis geodesia...? Festschrift for Erik W. Grafarend, F. Krumm and V.S. Schwarze (eds.) Univ. Stuttgart, ISSN 0933-2839 (1999) pp. 171–184. Los Alamos Eprint Archive, physics/9907046.

    Google Scholar 

  33. F.W. Hehl, Yu.N. Obukhov, and G.F. Rubilar, Spacetime metric from linear electrodynamics II, talk given at International European Conference on Gravitation: Journées Relativistes 99, Weimar, Germany, 12–17 Sep 1999. Ann. Phys. (Leipzig) 9 (2000), in print; Los Alamos Eprint Archive, gr-qc/9911096.

    Google Scholar 

  34. W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714–732(in German).

    Article  MATH  ADS  Google Scholar 

  35. J.S. Heyl and L. Hernquist, Birefringence and dichroism of the QED vacuum, J. Phys. A30 (1997) 6485–6492.

    ADS  MathSciNet  Google Scholar 

  36. S. Hojman, M. Rosenbaum, M.P. Ryan, and L.C. Shepley, Gauge invariance, minimal coupling, and torsion, Phys. Rev. D17 (1978) 3141–3146.

    ADS  MathSciNet  Google Scholar 

  37. G. ’t Hooft, A chiral alternative to the vierbein field in general relativity, Nucl. Phys. B357 (1991) 211–221.

    Article  ADS  Google Scholar 

  38. B.Z. Iliev, Normal frames and the validity of the equivalence principle. 1. Cases in a neighborhood and at a point, J. Phys. A29 (1996) 6895–6902.

    ADS  MathSciNet  Google Scholar 

  39. C. Itzykson and J.-B. Zuber, Quantum Field Theory. McGraw Hill, New York (1985).

    Google Scholar 

  40. A.Z. Jadczyk, Electromagnetic permeability of the vacuum and light-cone structure, Bull. Acad. Pol. Sci., Sér. sci. phys. et astr. 27 (1979) 91–94.

    MathSciNet  Google Scholar 

  41. J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63 (1989) 199–202.

    Article  ADS  Google Scholar 

  42. J.K. Jain, Composite fermion theory of fractional quantum Hall effect, Acta Phys. Polon. B26(1995) 2149–2166.

    Google Scholar 

  43. B.L. Johnson and G. Kirczenow, Composite fermions in the quantum Hall effect, Rep. Prog. Phys. 60 (1997) 889–939.

    Article  ADS  Google Scholar 

  44. M.W. Keller, A.L. Eichenberger, J.M. Martinis, and N.M. Zimmerman, A capacitance standard based on counting electrons, Science 285 (1999) 1706–1709.

    Article  Google Scholar 

  45. E.W. Kolb and M.S. Turner, The Early Universe. Addison-Wesley, Redwood City (1990) Chapter 10: Axions.

    MATH  Google Scholar 

  46. C. Lämmerzahl, R.A. Puntigam, and F.W. Hehl, Can the electromagnetic field couple to post-Riemannian structures? In: Proceedings of the 8th Marcel Grossmann Meeting on General Relativity, Jerusalem 1997, T. Piran and R. Ruffini, eds..World Scientific, Singapore (1999).

    Google Scholar 

  47. A. Lue, L. Wang, and M. Kamionkowski, Cosmological signature of new parityviolating interactions, Phys. Rev. Lett. 83 (1999) 1506–1509.

    Article  ADS  Google Scholar 

  48. P. Majumdar and S. SenGupta, Parity violating gravitational coupling of electromagnetic fields, Class. Quantum Grav. 16 (1999) L89–L94.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. B. Mashhoon, Nonlocal electrodynamics, in: Cosmology and Gravitation, Proc. VII Brasilian School of Cosmology and Gravitation, Rio de Janeiro, August 1993, M. Novello, editor. Editions Frontieres, Gif-sur-Yvette (1994) pp. 245–295.

    Google Scholar 

  50. J.C. Maxwell, A dynamical theory of the electromagnetic field, Ref.[65], Vol.1, pp. 526–597, see, in particular, Part III of this article.

    Google Scholar 

  51. E.W. Mielke, Geometrodynamics of Gauge Fields-On the geometry of Yang-Mills and gravitational gauge theories. Akademie-Verlag, Berlin (1987).

    MATH  Google Scholar 

  52. C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation. Freeman, San Francisco (1973).

    Google Scholar 

  53. S. Mohanty and A.R. Prasanna, Photon propagation in Einstein and higher derivative gravity, Nucl. Phys. B526 (1998) 501–508.

    Article  ADS  MathSciNet  Google Scholar 

  54. J.E. Moody and F. Wilczek, New macroscopic forces? Phys. Rev. D30 (1984) 130–138.

    ADS  Google Scholar 

  55. U. Muench, F.W. Hehl, and B. Mashhoon, Acceleration-induced nonlocal electrodynamics in Minkowski spacetime, Preprint Univ. Missouri-Columbia (March 2000), 14 pp.; Los Alamos Eprint Archive, gr-qc/0003093.

    Google Scholar 

  56. B. Mukhopadhyaya and S. Sengupta, A geometrical interpretation of parity violation in gravity with torsion, Phys. Lett. B458 (1999) 8–12.

    ADS  Google Scholar 

  57. C. Mukku and W.A. Sayed, Torsion without torsion, Phys. Lett. B82 (1979) 382–386.

    ADS  MathSciNet  Google Scholar 

  58. F. Müller-Hoissen, Non-minimal coupling from dimensional reduction of the Gauss-Bonnet action, Phys. Lett. B201 (1988) 325–327.

    ADS  Google Scholar 

  59. F. Müller-Hoissen, Modification of Einstein Yang-Mills theory from dimensional reduction of the Gauss-Bonnet action, Class. Quantum Grav. 5 (1988) L35–L40.

    Article  Google Scholar 

  60. F. Müller-Hoissen and R. Sippel, Spherically symmetric solutions of the nonminimally coupled Einstein-Maxwell equations, Class. Quantum Grav. 5 (1988) 1473–1488.

    Article  ADS  Google Scholar 

  61. Y. Nambu, The Aharonov-Bohm problem revisited, Los Alamos Eprint archive: hep-th/9810182.

    Google Scholar 

  62. W.-T. Ni, A non-metric theory of gravity. Dept. Physics, Montana State University, Bozeman. Preprint December 1973. [This paper is referred to by W.-T. Ni in Bull. Amer. Phys. Soc. 19 (1974) 655.] The paper is available via http://gravity5.phys.nthu.edu.tw/.

    Google Scholar 

  63. W.-T. Ni, Equivalence principles and electromagnetism, Phys. Rev. Lett. 38 (1977) 301–304.

    Article  ADS  MathSciNet  Google Scholar 

  64. W.-T. Ni, S.-S. Pan, H.-C. Yeh, L.-S. Hou, and J.-L. Wan, Search for an axionlike spin coupling using a paramagnetic salt with a dc SQUID, Phys. Rev. Lett. 82 (1999) 2439–2442.

    Article  ADS  Google Scholar 

  65. W.D. Niven (ed.), The Scientific Papers of James Clerk Maxwell, 2Volumes. Dover, New York (1965).

    MATH  Google Scholar 

  66. Yu. N. Obukhov, T. Fukui, and G.F. Rubilar, Wave propagation in linear electrodynamics, draft, University of Cologne (Feb. 2000).

    Google Scholar 

  67. Yu.N. Obukhov and F.W. Hehl, Space-time metric from linear electrodynamics, Phys. Lett. B458 (1999) 466–470.

    ADS  MathSciNet  Google Scholar 

  68. Yu.N. Obukhov and S.I. Tertychniy, Vacuum Einstein equations in terms of curvature-forms, Class. Quantum Grav. 13 (1996) 1623–1640.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. A. Peres, Electromagnetism, geometry, and the equivalence principle, Ann. Phys. (NY) 19 (1962) 279–286.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. C. Piron and D.J. Moore, New aspects of field theory, Turk. J. Phys. 19 (1995) 202–216.

    Google Scholar 

  71. J. Plebański, Non-Linear Electrodynamics-a Study, Nordita (1968). Our copy is undated and stems from the CINVESTAV Library, Mexico City (courtesy A. Macías).

    Google Scholar 

  72. E.J. Post, Formal Structure of Electromagnetics-General Covariance and Electromagnetics. North Holland, Amsterdam (1962) and Dover, Mineola, New York (1997).

    Google Scholar 

  73. E.J. Post, Quantum Reprogramming-Ensembles and Single Systems: A Two-Tier Approach to Quantum Mechanics. Kluwer, Dordrecht (1995).

    Google Scholar 

  74. A.R. Prasanna, A new invariant for electromagnetic fields in curved space-time, Phys. Lett. A37 (1971) 331–332.

    ADS  MathSciNet  Google Scholar 

  75. A.R. Prasanna, Maxwell’s equations in Riemann-Cartan space U4, Phys. Lett. A54 (1975) 17–18.

    ADS  MathSciNet  Google Scholar 

  76. R.A. Puntigam, C. Lämmerzahl, and F.W. Hehl, Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle, Class. Quantum Grav. 14 (1997) 1347–1356.

    Article  MATH  ADS  Google Scholar 

  77. M. Schönberg, Electromagnetism and gravitation, Rivista Brasileira de Fisica 1 (1971) 91–122.

    Google Scholar 

  78. J.A. Schouten, Tensor Analysis for Physicists. 2nd edition. Dover, Mineola, New York (1989).

    Google Scholar 

  79. G.N. Shikin, Static spherically symmetric solutions of the system of Einstein equations and non-linear electrodynamics equations with an arbitrary Lagrangian, in: “Relativity theory and gravitation”, V.I. Rodichev, ed. Nauka, Moscow (1976) pp. 129–132 (in Russian).

    Google Scholar 

  80. P. Sikivie, ed., Axions’ 98. Proceedings of the 5th IFT Workshop on Axions, Gainesville, Florida, USA. Nucl. Phys. B (Proc. Suppl.) 72 (1999) 1–240.

    Google Scholar 

  81. G.V. Skrotskii, The influence of gravitation on the propagation of light, Sov. Phys. Doklady 2 (1957) 226–229.

    MATH  ADS  Google Scholar 

  82. L.L. Smalley, On the extension of geometric optics from Riemannian to Riemann-Cartan spacetime, Phys. Lett. A117 (1986) 267–269.

    ADS  MathSciNet  Google Scholar 

  83. J. Stachel, Covariant formulation of the Cauchy problem in generalized electrodynamics and general relativity, Acta Phys. Polon. 35 (1969) 689–709.

    MathSciNet  Google Scholar 

  84. M. Tinkham, Introduction to Superconductivity. 2nd ed.. McGraw-Hill, New York (1996).

    Google Scholar 

  85. R.A. Toupin, Elasticity and electro-magnetics, in: Non-Linear Continuum Theories, C.I.M.E. Conference, Bressanone, Italy 1965. C. Truesdell and G. Grioli coordinators Pp.203–342.

    Google Scholar 

  86. A. Trautman, Gauge and optical aspects of gravitation, Class. Quantum Grav. 16 (1999) A157–A175.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  87. C. Truesdell and R.A. Toupin, The Classical Field Theories, in: Handbuch der Physik, Vol. III/1, S. Flügge ed.. Springer, Berlin (1960) pp. 226–793.

    Google Scholar 

  88. H. Urbantke, A quasi-metric associated with SU(2) Yang-Mills field, Acta Phys. Austriaca Suppl. XIX (1978) 875–816.

    Google Scholar 

  89. A.M. Volkov, A.A. Izmest'ev, and G.V. Skrotskii, The propagation of electromagnetic waves in a Riemannian space, Sov. Phys. JETP 32 (1971) 686–689 [ZhETF 59 (1970) 1254-1261 (in Russian)].

    ADS  MathSciNet  Google Scholar 

  90. C. Wang, Mathematical Principles of Mechanics and Electromagnetism, Part B: Electromagnetism and Gravitation. Plenum Press, New York (1979).

    MATH  Google Scholar 

  91. S. Weinberg, A new light boson? Phys. Rev. Lett. 40 (1978) 223–226.

    Article  ADS  Google Scholar 

  92. F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279–282.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hehl, F.W., Obukhov, Y.N. (2001). How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature?. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds) Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40988-2_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-40988-2_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41236-6

  • Online ISBN: 978-3-540-40988-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics