Skip to main content

Coherent Vortex Dynamics in Two- and Three-Dimensional Bose-Einstein Condensates

  • Conference paper
  • First Online:
Directions in Quantum Optics

Part of the book series: Lecture Notes in Physics ((LNP,volume 561))

  • 762 Accesses

Abstract

Vortices have been a major interest in Bose-condensed systems since the early studies of super.uid He II. These topological objects in the quantum field have a 2π phase circulation about a point of zero amplitude, and thus allow circulating flow in the (otherwise) irrotational quantum fluid. A classic experiment in superfluidity demonstrated that vortices form as the preferred stable state in a rotating cylinder of He II [1], a result explained theoretically in terms of the equilibrium energy properties of vortices [2]. The recently realised gaseous Bose-Einstein condensates (BEC) provide important new opportunities for the study of vortices in quantum fluids, and in particular of vortex dynamics. A priori theoretical calculations can be more readily made for these weakly interacting gases than for strongly interacting quantum liquids such as He II, and the experiments can make direct and detailed dynamical observations. Initial theoretical studies of vortices in BEC concentrated on static properties including stability and excitation spectra [3]-[6]. Recently, however, a number of dynamical studies of vortices have been made using the Gross-Pitaevskii equation (GPE) for the mean field wavefunction ψ(r, t), which is known to be accurate near T = 0. Jackson et al. [7] showed that vortices may be generated by movement of a localised potential through a condensate, while Marzlin and Zhang [8] investigated vortex production using four laser beams in a ring configuration. A potentially important scheme for vortex detection using phase sensitive detection was formulated by Bolda and Walls [9]. Experimental realisation of vortices has now been achieved by the JILA group in a two-component condensate [10], in confirmation of a theoretical prediction by Williams and Holland [11], and also by Madison et al. [12] who reported the first observation of vortices in a single-component condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Packard, T.M. Sanders, Jr.: Phys. Rev. A 6, 799 (1972)

    Article  ADS  Google Scholar 

  2. D.R. Tilley, J. Tilley: Superfluidity and Superconductivity, 3rd edn. (Institute of Physics Publishing, Bristol 1990)

    Google Scholar 

  3. F. Dalfovo, S. Stringari: Phys. Rev. A 53, 2477 (1996)

    Article  ADS  Google Scholar 

  4. R.J. Dodd, K. Burnett, M. Edwards, C.W. Clark: Phys. Rev. A 56, 587 (1997)

    Article  ADS  Google Scholar 

  5. A.L. Fetter: J. Low Temp. Phys. 113, 189 (1998)

    Article  Google Scholar 

  6. D.A. Butts, D.S. Rokhsar: Nature 397, 327 (1998)

    ADS  Google Scholar 

  7. B. Jackson, J.F. McCann, C.S. Adams: Phys. Rev. Lett. 80, 3903 (1998)

    Article  ADS  Google Scholar 

  8. K.-P. Marzlin, W. Zhang: Phys. Rev. A 57, 4761 (1998)

    Article  ADS  Google Scholar 

  9. E.L. Bolda, D.F. Walls: Phys. Rev. Lett. 81, 5477 (1998)

    Article  ADS  Google Scholar 

  10. M.R. Matthews et al.: Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  11. J.E. Williams, M.J. Holland: Nature 401, 568 (1999)

    Article  ADS  Google Scholar 

  12. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard: Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  13. B.M. Caradoc-Davies, R.J. Ballagh, K. Burnett: Phys. Rev. Lett. 83, 895 (1999)

    Article  ADS  Google Scholar 

  14. A.I. Safonov et al.: Phys. Rev. Lett. 81, 4545 (1998)

    Article  ADS  Google Scholar 

  15. C. Fox, R.J. Ballagh, A. Wall: in preparation

    Google Scholar 

  16. MPEG movies showing these results are available from: <http://www.physics.otago.ac.nz/research/bec>

  17. L. Allen, J.H. Eberly: Optical Resonance and Two-Level Atoms (John Wiley and Sons, New York 1975)

    Google Scholar 

  18. D.S. Rokhsar: Phys. Rev. Lett. 79, 2164 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ballagh, R., Caradoc-Davies, B. (2001). Coherent Vortex Dynamics in Two- and Three-Dimensional Bose-Einstein Condensates. In: Carmichael, H.J., Glauber, R.J., Scully, M.O. (eds) Directions in Quantum Optics. Lecture Notes in Physics, vol 561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40894-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-40894-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41187-1

  • Online ISBN: 978-3-540-40894-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics