Hierarchical Clustering of Functional MRI Time-Series by Deterministic Annealing

  • Axel Wismüller
  • Dominik R. Dersch
  • Bernadette Lipinski
  • Klaus Hahn
  • Dorothee Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1933)

Abstract

In this paper, we present a neural network approach to hierarchical unsupervised clustering of functional magnetic resonance imaging (fMRI) time-sequences of the human brain by self-organized fuzzy minimal free energy vector quantization (VQ). In contrast to conventional model-based fMRI data analysis techniques, this deterministic annealing procedure does not imply presumptive knowledge of expected stimulus-response patterns, and, thus, may be applied to fMRI experiments in which the time course of the stimulus is unknown like in spontaneously occurring events, e.g. hallucinations, epileptic fits, or sleep. Moreover, as minimal free energy VQ represents a hierarchical data analysis strategy implying repetitive cluster splitting, it can provide a natural approach to the subclassification task of activated brain regions on different scales of resolution with respect to fine-grained differences in pixel dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A. Bandettini, A. Jesmanowicz, E.C. Wong, and J.S. Hyde: Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (1993) 161–173 51CrossRefGoogle Scholar
  2. 2.
    D.R. Dersch: Eigenschaften neuronaler Vektorquantisierer und ihre Anwendung in der Sprachverarbeitung. Verlag Harri Deutsch, Reihe Physik, Bd. 54, Thun, Frankfurt am Main (1996) ISBN 3-8171-1492-3 50, 50, 50Google Scholar
  3. 3.
    D.R. Dersch, S. Albrecht, and P. Tavan: Hierarchical fuzzy clustering. In A. Wismüller and D.R. Dersch, editors, Symposion über biologische Informationsverarbeitung und Neuronale Netze — SINN’ 95, Konferenzband. Hanns-Seidel-Stiftung, München (1996) 50, 51Google Scholar
  4. 4.
    D.R. Dersch and P. Tavan: Control of annealing in minimal free energy vector quantization. In Proceedings of the IEEE International Conference on Neural Networks ICNN’94, Orlando, Florida (1994) 698–70350, 51Google Scholar
  5. 5.
    D.R. Dersch and P. Tavan: Load balanced vector quantization. In Proceedings of the International Conference on Arti.cial Neural Networks ICANN, Springer (1994) 1067–107050, 51, 51Google Scholar
  6. 6.
    D.R. Dersch and P. Tavan: Asymptotic level density in topological feature maps. IEEE Transactions on Neural Networks 6(1) (1995) 230–236 51CrossRefGoogle Scholar
  7. 7.
    H. Fischer, M. Buechert, and J. Hennig: Assessing the dynamics of fMRI data usingself-organizing map clustering. In Proceedings of the 5th SMR meeting (1997) 50Google Scholar
  8. 8.
    T. Kohonen: The self-organizing map. Proceedings of the IEEE 78(9) (1990) 1464–1480 50Google Scholar
  9. 9.
    T.M. Martinetz and K. Schulten: A ‘neural gas’ network learns topologies. In Proceedings of the International Conference on Artificial Neural Networks ICANN, Amsterdam, Elsevier Science Publishers (1991) 397–402 50Google Scholar
  10. 10.
    K. Rose, E. Gurewitz, and G.C. Fox: Vector quantization by deterministic annealing. IEEE Transactions on Information Theory 38(4) (1992) 1249–1257 50, 50, 51MATHCrossRefGoogle Scholar
  11. 11.
    A. Wismüller and D.R. Dersch: Neural network computation in biomedical research: chances for conceptual cross-fertilization. Theory in Biosciences 116(3) (1997) 49, 50Google Scholar
  12. 12.
    R.P. Woods, S.R. Cherry, and J.C. Mazziotta: Rapid automated algorithm for aligning and reslicing PET images. Journal of Computer Assisted Tomography 16 (1992) 620–633 51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Axel Wismüller
    • 1
  • Dominik R. Dersch
    • 2
  • Bernadette Lipinski
    • 3
  • Klaus Hahn
    • 1
  • Dorothee Auer
    • 3
  1. 1.Institut für Radiologische DiagnostikLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Integral Energy Corp.SydneyAustralia
  3. 3.Max Planck Institute of PsychiatryMunichGermany

Personalised recommendations