Cryptanalysis of the Dickson-Scheme

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 219)


In Müller and W . Nöbauer (1981) a new public-key cryptosystem was introduced. Similar to the well-known RSA-scheme, the plaintext alphabet and the code alphabet of this cryptosystem are given by Z/(n), the ring of residue classes of the integers Z modulo a natural number n. In contrast to the RSA-scheme, however, n need not be square free, but can be an arbitrary positive integer. The encryption polynomials xk of the RSA-scheme are replaced by another class of polynomials, namely by the so-called Dickson-polynomials. We call this cryptosystem the Dickson-scheme.


  1. Berkowitz, S. (1982): Factoring via superencryption. Cryptologia 6, 229–237.MathSciNetCrossRefGoogle Scholar
  2. Herlestam, T. (1978): Critical remarks on some public-key cryptosystems. BIT 18, 493–496.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Lausch, H., Müller, W.B. and Nöbauer, W. (1973): Über die Struktur einer durch Dicksonpolynome dargestellten Permutationsgruppe des Restklassenringes modulo n. J. reine angew. Math. 261, 88–99.zbMATHMathSciNetGoogle Scholar
  4. Lidl, R. and Niederreiter, H. (1983): Finite Fields. Vol. 20 of the Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading, Massachusetts.zbMATHGoogle Scholar
  5. Müller, W.B. and Nöbauer, W. (1981): Some remarks on public-key cryptosystems. Studia Sci. Math. Hungar. 16, 71–76.zbMATHMathSciNetGoogle Scholar
  6. Nöbauer, R. (1985): Über die Fixpunkte von durch Dicksonpolynome dargestellten Permutationen. Acta Arithmetica 45, 91–99.Google Scholar
  7. Nöbauer, R. (1985/86): Key distribution systems based on polynomial functions and on Rédei-functions. To appear in Problems of Control and Information Theory.Google Scholar
  8. Nöbauer, W. (1965): Über Permutationspolynome und Permutationsfunktionen für Primzahlpotenzen. Monatsh. Math. 69, 230–238.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Nöbauer, W. (1968): Über eine Klasse von Permutationspolynomen und die dadurch dargestellten Gruppen. J. reine angew. Math. 231, 215–219.zbMATHGoogle Scholar
  10. Nöbauer, W. (1985): On the length of cycles of polynomial permutations. To appear in Contributions to General Algebra 3, Verlag B.G. Teubner, Stuttgart.Google Scholar
  11. Rivest, R. L. (1978): Remarks on a proposed cryptanalytic attack on the M.I.T. public-key cryptosystem. Cryptologia 2, 62–65.CrossRefGoogle Scholar
  12. Schnorr, C.P. (1981): Zur Analyse des RSA-Schemas. Preprint. Fachbereich Mathematik, Universität Frankfurt.Google Scholar
  13. Simmons, G.J. and Norris, N.J. (1977): Preliminary comments on the M.I.T. public-key cryptosystem. Cryptologia 1, 406–414.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  1. 1.Institut für MathematikUniversität KlagenfurtKlagenfurtAustria

Personalised recommendations