Advertisement

Information theory without the finiteness assumption, II. Unfolding the DES

  • G. R. Blakley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 218)

Abstract

The DES is described in purely mathematical terms by means of confusion, diffusion and arithmetic involving a group of messages and a group of keys. It turns out to be a diffusion/arithmetic cryptosystem in which confusion plays no role, although the S-boxes effect an arithmetic operation of replacement (which is sometimes mistaken for confusion) as an important part of the encryption process.

Key Words

alphabet arithmetic associativity Caesar cipher code codomain commutativity composite confusion continuous cryptosystem cyclic group DES diffusion discrete distributivity domain field function galois field group matrix message polyalphabet position product ramp scheme relation replacement ring substitution sum symbol symmetric group threshold scheme toroidal matrix transposition universal algebra vector space 

10. References

  1. BE82.
    H. Beker and F. Piper, Cipher Systems: The Protection of Communications, Wiley-Interscience, New York (1982).zbMATHGoogle Scholar
  2. BL83.
    G. R. Blakley and Laif Swanson, Infinite structures in information theory, Advances in Cryptology: Proceedings of Crypto’ 82, Plenum Press (1983), pp. 39–50.Google Scholar
  3. BL85a.
    G. R. Blakley and Catherine Meadows, Security of ramp schemes, in G. R. Blakley and D. Chaum, (editors), Advances in Cryptology, Proceedings of Crypto’ 84, Springer-Verlag, Berlin (1985), pp. 242–268.Google Scholar
  4. BL85b.
    G. R. Blakley, Information theory without the finiteness assumption, I: Cryptosystems as group-theoretic objects, in G. R. Blakley and D. Chaum, (editors), Advances in Cryptology, Proceedings of Crypto’ 84, Springer-Verlag, Berlin (1985), pp. 314–338.Google Scholar
  5. BL87.
    G. R. Blakley and W. Rundell, A cryptosystem based on an analog of heat flow, Technical Report, September (1985).Google Scholar
  6. DA84.
    M. Davio, Y. Desmedt, M. Fosseprez, R. Govaerts, J. Hulsbosch, P. Neutjens, P. Piret, J.-J. Quisquater, J. Vandewalle and P. Wouters, Analytical Characteristics of the DES, in Advances in Cryptology, Proceedings of Crypto’ 83, D. Chaum, Editor, Plenum Press, New York (1984), pp. 171–202.Google Scholar
  7. DE82.
    D. E. R. Denning, Cryptography and Data Security, Addison-Wesley, Reading, Massachusetts (1980).Google Scholar
  8. DI79.
    W. Diffie and M. E. Hellman, Privacy and authentication, An introduction to cryptography, Proceedings of the IEEE, vol. 67 (1979), pp. 397–427.CrossRefGoogle Scholar
  9. GR68.
    G. Grätzer, Universal Algebra, Van Nostrand, Princeton, New Jersey (1968).zbMATHGoogle Scholar
  10. HA60.
    P. R. Halmos, Naive Set Theory, Van Nostrand, Princeton, New Jersey (1960).zbMATHGoogle Scholar
  11. HO71.
    K. Hoffman and R. Kunze, Linear Algebra, Second Edition, Prentice Hall, Englewood Cliffs, New Jersey (1971).zbMATHGoogle Scholar
  12. KI71.
    J. Killingbeck and G. H. A. Cole, Mathematical Techniques and Physical Applications, Academic Press, New York (1971).zbMATHGoogle Scholar
  13. KO56.
    A. N. Kolmogoroff, On the Shannon theory of information transmission in the case of continuous signals, IEEE Transactions on Information Theory, vol. IT2 (1956), pp. 102–108.CrossRefGoogle Scholar
  14. KO81.
    A. G. Konheim, Cryptography: A Primer, Wiley-Interscience, New York (1981).zbMATHGoogle Scholar
  15. ME82.
    C. H. Meyer and S. M. Matyas, Cryptography: A New Dimension in Computer Data Security, Wiley-Interscience, New York (1982), Third Printing.zbMATHGoogle Scholar
  16. LI83.
    R. Lidl and H. Niederreiter, Finite Fields, Volume 20 of the Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Massachusetts (1983).zbMATHGoogle Scholar
  17. MA67.
    S. MacLane and G. Birkhoff, Algebra, Macmillan, New York (1967).zbMATHGoogle Scholar
  18. MA78.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1978).Google Scholar
  19. ME82.
    C. H. Meyer and S. M. Matyas, Cryptography: A New Dimension in Computer Data Security, Wiley-Interscience, New York (1982).zbMATHGoogle Scholar
  20. MO63.
    G. D. Mostow, J. H. Sampson and J.-P. Meyer, Fundamental Structures of Algebra, McGraw-Hill, New York (1963).zbMATHGoogle Scholar
  21. NI59.
    H. K. Nickerson, D. C. Spencer and N. E. Steenrod, Advanced Calculus, Van Nostrand, Princeton, New Jersey (1959).Google Scholar
  22. PA66.
    H. Paley and P. Weichsel, A First Course in Abstract Algebra, Holt, Rinehart and Winston, New York (1966).Google Scholar
  23. RO64.
    G.-C. Rota, On the foundations of combinatorial theory, I. The theory of Möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Vol. 2 (1964), pp. 340–368.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • G. R. Blakley
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege Station

Personalised recommendations