Skip to main content

Spinal Cord Protection for Descending Aortic Surgery. Clinical and Scientific Basis for Contemporary Surgical Practice

  • Chapter
Thoracic Aortic Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cole PT, Gutelius JR. Neurologic complications of operations on the descending thoracic aorta. Can J Surg 1969; 12(4):435–443.

    PubMed  CAS  Google Scholar 

  2. Crawford ES. Symposium: prevention of complications of abdominal aortic reconstruction. Introduction. Surgery 1983; 93(1 Pt l):91–96.

    PubMed  CAS  Google Scholar 

  3. Turnbull IM. Chapter 5. Blood supply of the spinal cord: normal and pathological considerations. Clin Neurosurg 1973; 20:56–84.

    PubMed  CAS  Google Scholar 

  4. Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P. Arterial vascularisation of the spinal cord. Recent studies of the anatomic substitution pathways. J Neurosurg 1971; 253–262.

    Google Scholar 

  5. Morishita K, Murakami G, Fujisawa Y, Kawaharada N, Fukada J, Saito T et al. Anatomical study of blood supply to the spinal cord. Ann Thorac Surg 2003; 76(6):1967–1971.

    PubMed  Google Scholar 

  6. Koshino T, Murakami G, Morishita K, Mawatari T, Abe T. Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 1999; 117(5):898–905.

    PubMed  CAS  Google Scholar 

  7. Biglioli P, Roberto M, Cannata A, Parolari A, Fumero A, Grillo F, et al. Upper and lower spinal cord blood supply: the continuity of the anterior spinal artery and the relevance of the lumbar arteries. J Thorac Cardiovasc Surg 2004; 127(4):1188–1192.

    PubMed  Google Scholar 

  8. Griepp RB, Ergin MA, Galla JD, Lansman S, Khan N, Quintana C, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg 1996; 112(5):1202–1213.

    PubMed  CAS  Google Scholar 

  9. Christiansson L, Ulus AT, Hellberg A, Bergqvist D, Wiklund L, Karacagil S. Aspects of the spinal cord circulation as assessed by intrathecal oxygen tension monitoring during various arterial interruptions in the pig. J Thorac Cardiovasc Surg 2001; 121(4):762–772.

    PubMed  CAS  Google Scholar 

  10. Maniar HS, Sundt TM, III, Prasad SM, Chu CM, Camillo CJ, Moon MR, et al. Delayed paraplegia after thoracic and thoracoabdominal aneurysm repair: a continuing risk. Ann Thorac Surg 2003; 75(1):113–119.

    PubMed  Google Scholar 

  11. Strauch JT, Spielvogel D, Lauten A, Zhang N, Shiang H, Weisz D, et al. Importance of extrasegmental vessels for spinal cord blood supply in a chronic porcine model. Rev Port Cir Cardiothorac Vase 2003; 10(4):185–191.

    Google Scholar 

  12. Gravereaux EC, Faries PL, Burks JA, Latessa V, Spielvogel D, Hollier LH, et al. Risk of spinal cord ischemia after endograft repair of thoracic aortic aneurysms. J Vase Surg 2001; 34(6):997–1003.

    CAS  Google Scholar 

  13. Taira Y, Marsala M. Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Stroke 1996; 27(10):1850–1858.

    PubMed  CAS  Google Scholar 

  14. Duggal N, Lach B. Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 2002; 33(1):116–121.

    PubMed  CAS  Google Scholar 

  15. Afifi S. Pro: cerebrospinal fluid drainage protects the spinal cord during thoracoabdominal aortic reconstruction surgery. J Cardiothorac Vase Anesth 2002; 16(5):643–649.

    Google Scholar 

  16. Wada T, Yao H, Miyamoto T, Mukai S, Yamamura M. Prevention and detection of spinal cord injury during thoracic and thoracoabdominal aortic repairs. Ann Thorac Surg 2001; 72(l):80–84.

    PubMed  CAS  Google Scholar 

  17. Gelman S. The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 1995; 82(4):1026–1060.

    PubMed  CAS  Google Scholar 

  18. Marini CP, Levison J, Caliendo F, Nathan IM, Cohen JR. Control of proximal hypertension during aortic cross-clamping: its effect on cerebrospinal fluid dynamics and spinal cord perfusion pressure. Semin Thorac Cardiovasc Surg 1998; 10(l):51–56.

    PubMed  CAS  Google Scholar 

  19. Marini CP, Grubbs PE, Toporoff B, Woloszyn TT, Coons MS, Acinapura AJ, et al. Effect of sodium nitroprusside on spinal cord perfusion and paraplegia during aortic cross-clamping. Ann Thorac Surg 1989; 47(3):379–383.

    PubMed  CAS  Google Scholar 

  20. Saether OD, Juul R, Aadahl P, Stromholm T, Myhre HO. Cerebral haemodynamics during thoracic-and thoracoabdominal aortic aneurysm repair. Eur J Vase Endovasc Surg 1996; 12(l):81–85.

    CAS  Google Scholar 

  21. Griepp RB, Ergin MA, Galla JD, Klein JJ, Spielvogel D, Griepp EB. Minimizing spinal cord injury during repair of descending thoracic and thoracoabdominal aneurysms: the Mount Sinai approach. Semin Thorac Cardiovasc Surg 1998; 10(l):25–28.

    PubMed  CAS  Google Scholar 

  22. Biglioli P, Spirito R, Porqueddu M, Agrifoglio M, Pompilio G, Parolari A, et al. Quick, simple clamping technique in descending thoracic aortic aneurysm repair. Ann Thorac Surg 1999; 67(4):1038–1043.

    PubMed  CAS  Google Scholar 

  23. Schepens MA, Defauw JJ, Hamerlijnck RP, De Geest R, Vermeulen FE. Surgical treatment of thoracoabdominal aortic aneurysms by simple crossclamping. Risk factors and late results. J Thorac Cardiovasc Surg 1994; 107(l):134–142.

    PubMed  CAS  Google Scholar 

  24. Safi HJ, Winnerkvist A, Miller CC, III, Iliopoulos DC, Reardon MJ, Espada R, et al. Effect of extended cross-clamp time during thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 1998; 66(4):1204–1209.

    PubMed  CAS  Google Scholar 

  25. Cunningham JN Jr, Laschinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, et al. Measurement of spinal cord ischemia during operations upon the thoracic aorta: initial clinical experience. Ann Surg 1982; 196(3):285–296.

    PubMed  Google Scholar 

  26. Crawford ES, Mizrahi EM, Hess KR, Coselli JS, Safi HJ, Patel VM. The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg 1988; 95(3):357–367.

    PubMed  CAS  Google Scholar 

  27. Galla JD, Ergin MA, Lansman SL, McCullough JN, Nguyen KH, Spielvogel D, et al. Use of somatosensory evoked potentials for thoracic and thoracoabdominal aortic resections. Ann Thorac Surg 1999; 67(6):1947–1952.

    PubMed  CAS  Google Scholar 

  28. Meylaerts SA, Jacobs MJ, van I, V, De Haan P, Kalkman CJ. Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 1999; 230(6):742–749.

    PubMed  CAS  Google Scholar 

  29. Guerit JM, Verhelst R, Rubay J, Khoury G, Matta A, Dion R. Multilevel somatosensory evoked potentials (SEPs) for spinal cord monitoring in descending thoracic and thoraco-abdominal aortic surgery. Eur J Cardiothorac Surg 1996; 10(2):93–103.

    PubMed  CAS  Google Scholar 

  30. Reuter DG, Tacker WA Jr, Badylak SF, Voorhees WD III, Konrad PE. Correlation of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc Surg 1992; 104(2):262–272.

    PubMed  CAS  Google Scholar 

  31. De Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg 1997; 113(l):87–100.

    PubMed  Google Scholar 

  32. Jacobs MJ, Meylaerts SA, De Haan P, de Mol BA, Kalkman CJ. Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. J Vase Surg 1999; 29(l):48–57.

    CAS  Google Scholar 

  33. Sueda T, Okada K, Watari M, Orihashi K, Shikata H, Matsuura Y. Evaluation of motor-and sensory-evoked potentials for spinal cord monitoring during thoracoabdominal aortic aneurysm surgery. Jpn J Thorac Cardiovasc Surg 2000; 48(l):60–65.

    PubMed  CAS  Google Scholar 

  34. Juvonen T, Biancari F, Rimpilainen J, Satta J, Rainio P, Kiviluoma K. Strategies for spinal cord protection during descending thoracic and thoracoabdominal aortic surgery: Up-to-date experimental and clinical results — a review. Scand Cardiovasc J 2002; 36(3):136–160.

    PubMed  Google Scholar 

  35. Svensson LG. Intraoperative identification of spinal cord blood supply during repairs of descending aorta and thoracoabdominal aorta. J Thorac Cardiovasc Surg 1996; 112(6):1455–1460.

    PubMed  CAS  Google Scholar 

  36. Anderson RE, Winnerkvist A, Hansson LO, Nilsson O, Rosengren L, Settergren G, et al. Biochemical markers of cerebrospinal ischemia after repair of aneurysms of the descending and thoracoabdominal aorta. J Cardiothorac Vase Anesth 2003; 17(5):598–603.

    Google Scholar 

  37. Shiiya N, Kunihara T, Miyatake T, Matsuzaki K, Yasuda K. Tau protein in the cerebrospinal fluid is a marker of brain injury after aortic surgery. Ann Thorac Surg 2004; 77(6):2034–2038.

    PubMed  Google Scholar 

  38. van Dongen EP, Ter Beek HT, Boezeman EH, Schepens MA, Langemeijer HJ, Aarts LP. Normal serum concentrations of S-100 protein and changes in cerebrospinal fluid concentrations of S-100 protein during and after thoracoabdominal aortic aneurysm surgery: Is S-100 protein a biochemical marker of clinical value in detecting spinal cord ischemia? J Vase Surg 1998; 27(2):344–346.

    Google Scholar 

  39. Scheinin SA, Cooley DA. Graft replacement of the descending thoracic aorta: results of “open” distal anastomosis. Ann Thorac Surg 1994; 58(l):19–22.

    PubMed  CAS  Google Scholar 

  40. Cooley DA, Golino A, Frazier OH. Single-clamp technique for aneurysms of the descending thoracic aorta: report of 132 consecutive cases. Eur J Cardiothorac Surg 2000; 18(2):162–167.

    PubMed  CAS  Google Scholar 

  41. Schepens MA, Vermeulen FE, Morshuis WJ, Dossche KM, van Dongen EP, Ter Beek HT, et al. Impact of left heart bypass on the results of thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 1999; 67(6):1963–1967.

    PubMed  CAS  Google Scholar 

  42. Tefera G, Acher CW, Wynn MM. Clamp and sew techniques in thoracoabdominal aortic surgery using naloxone and CSF drainage. Semin Vase Surg 2000; 13(4):325–330.

    CAS  Google Scholar 

  43. Safi HJ, Miller CC, III, Huynh TT, Estrera AL, Porat EE, Winnerkvist AN, et al. Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair: ten years of organ protection. Ann Surg 2003; 238(3):372–380.

    PubMed  Google Scholar 

  44. Coselli JS, LeMaire SA, Conklin LD, Adams GJ. Left heart bypass during descending thoracic aortic aneurysm repair does not reduce the incidence of paraplegia. Ann Thorac Surg 2004; 77(4):1298–1303.

    PubMed  Google Scholar 

  45. Walterbusch G, Fromke J, Sydow M. A simple method to reduce ischemic time of the spinal cord in extensive thoracoabdominal aneurysm operations. Thorac Cardiovasc Surg 2003; 51(l):46–48.

    PubMed  CAS  Google Scholar 

  46. Lee JT, White RA. Current status of thoracic aortic endograft repair. Surg Clin North Am 2004; 84(5):1295.

    PubMed  Google Scholar 

  47. Hanley JA, Lippman-Hand A. If nothing goes wrong, is everything all right? Interpreting zero numerators. JAMA 1983; 249(13):1743–1745.

    PubMed  CAS  Google Scholar 

  48. Anyanwu AC, Treasure T. Unrealistic expectations arising from mortality data reported in the cardiothoracic journals. J Thorac Cardiovasc Surg 2002; 123(l):16–20.

    PubMed  Google Scholar 

  49. Leurs LJ, Bell R, Degrieck Y, Thomas S, Hobo R, Lundbom J. Endovascular treatment of thoracic aortic diseases: combined experience from the EUROSTAR and United Kingdom thoracic endograft registries. J Vase Surg 2004; 40(4):670–679.

    Google Scholar 

  50. Grabenwoger M, Hutschala D, Ehrlich MP, Cartes-Zumelzu F, Thurnher S, Lammer J, et al. Thoracic aortic aneurysms: treatment with endovascular self-expandable stent grafts. Ann Thorac Surg 2000; 69(2):441–445.

    PubMed  CAS  Google Scholar 

  51. Crawford ES, Rubio PA. Reappraisal of adjuncts to avoid ischemia in the treatment of aneurysms of descending thoracic aorta. J Thorac Cardiovasc Surg 1973; 66(5):693–704.

    PubMed  CAS  Google Scholar 

  52. Ergin MA, Galla JD, Lansman SL, Taylor M, Griepp RB. Distal perfusion methods for surgery of the descending aorta. Semin Thorac Cardiovasc Surg 1991; 3(4):293–299.

    PubMed  CAS  Google Scholar 

  53. von Oppell UO, Dunne TT, De Groot KM, Zilla P. Spinal cord protection in the absence of collateral circulation: meta-analysis of mortality and paraplegia. J Card Surg 1994; 9(6):685–691.

    Google Scholar 

  54. Verdant A, Page A, Cossette R, Dontigny L, Page P, Baillot R. Surgery of the descending thoracic aorta: spinal cord protection with the Gott shunt. Ann Thorac Surg 1988; 46(2):147–154.

    PubMed  CAS  Google Scholar 

  55. Laschinger JC, Cunningham JN Jr, Nathan IM, Knopp EA, Cooper MM, Spencer FC. Experimental and clinical as sessment of the adequacy of partial bypass in maintenance of spinal cord blood flow during operations on the thoracic aorta. Ann Thorac Surg 1983; 36(4):417–426.

    PubMed  CAS  Google Scholar 

  56. Elmore JR, Gloviczki P, Harper CM Jr, Murray MJ, Wu QH, Bower TC et al. Spinal cord injury in experimental thoracic aortic occlusion: investigation of combined methods of protection. J Vase Surg 1992; 15(5):789–798.

    CAS  Google Scholar 

  57. Cambria RP, Davison JK, Carter C, Brewster DC, Chang Y, Clark KA, et al. Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: a five-year experience. J Vase Surg 2000; 31(6):1093–1102.

    CAS  Google Scholar 

  58. Coselli JS, LeMaire SA. Left heart bypass reduces paraplegia rates after thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 1999; 67(6):1931–1934.

    PubMed  CAS  Google Scholar 

  59. Cambria RP, Davison JK. Regional hypothermia for prevention of spinal cord ischemic complications after thoracoabdominal aortic surgery: experience with epidural cooling. Semin Thorac Cardiovasc Surg 1998; 10(l):61–65.

    PubMed  CAS  Google Scholar 

  60. Meylaerts SA, De Haan P, Kalkman CJ, Jaspers J, Vanicky I, Jacobs MJ. Prevention of paraplegia in pigs by selective segmental artery perfusion during aortic cross-clamping. J Vase Surg 2000; 32(l):160–170.

    CAS  Google Scholar 

  61. Ueda T, Shimizu H, Mori A, Kashima I, Moro K, Kawada S. Selective perfusion of segmental arteries in patients undergoing thoracoabdominal aortic surgery. Ann Thorac Surg 2000; 70(l):38–43.

    PubMed  CAS  Google Scholar 

  62. Sueda T, Morita S, Okada K, Orihashi K, Shikata H, Matsuura Y. Selective intercostal arterial perfusion during thoracoabdominal aortic aneurysm surgery. Ann Thorac Surg 2000; 70(l):44–47.

    PubMed  CAS  Google Scholar 

  63. Winnerkvist A, Bartoli S, Iliopoulos DC, Hess KR, Miller CC, Safi HJ. Spinal cord protection during aortic cross clamping: retrograde venous spinal cord perfusion, distal aortic perfusion, and cerebrospinal fluid drainage. Scand Cardiovasc J 2002; 36(l):6–10.

    PubMed  Google Scholar 

  64. Kataoka K, Yanase H. Mild hypothermia-a revived countermeasure against ischemic neuronal damages. Neurosci Res 1998; 32(2):103–117.

    PubMed  CAS  Google Scholar 

  65. Wakamatsu H, Matsumoto M, Nakakimura K, Sakabe T. The effects of moderate hypothermia and intrathecal tetracaine on glutamate concentrations of intrathecal dialysate and neurologic and histopathologic outcome in transient spinal cord ischemia in rabbits. Anesth Analg 1999; 88(l):56–62.

    PubMed  CAS  Google Scholar 

  66. Matsumoto M, Iida Y, Sakabe T, Sano T, Ishikawa T, Nakakimura K. Mild and moderate hypothermia provide better protection than a burst-suppression dose of thiopental against ischemic spinal cord injury in rabbits. Anesthesiology 1997; 86(5):1120–1127.

    PubMed  CAS  Google Scholar 

  67. Strauch JT, Lauten A, Spielvogel D, Rinke S, Zhang N, Weisz D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg 2004; 25(5):708–715.

    PubMed  Google Scholar 

  68. von Segesser LK, Marty B, Mueller X, Ruchat P, Gersbach P, Stumpe F, et al. Active cooling during open repair of thoraco-abdominal aortic aneurysms improves outcome. Eur J Cardiothorac Surg 2001; 19(4):411–415.

    Google Scholar 

  69. Svensson LG, Khitin L, Nadolny EM, Kimmel WA. Systemic temperature and paralysis after thoracoabdominal and descending aortic operations. Arch Surg 2003; 138(2):175–179.

    PubMed  Google Scholar 

  70. Cooley DA, Jones BA. Use of selective hypothermia to protect the spinal cord during resection of thoracoabdominal aneurysms. Tex Heart Inst J 2000; 27(1):29–31.

    PubMed  CAS  Google Scholar 

  71. Kouchoukos NT, Wareing TH, Izumoto H, Klausing W, Abboud N. Elective hypothermic cardiopulmonary bypass and circulatory arrest for spinal cord protection during operations on the thoracoabdominal aorta. J Thorac Cardiovasc Surg 1990; 99(4):659–664.

    PubMed  CAS  Google Scholar 

  72. Kouchoukos NT. Hypothermic circulatory arrest and hypothermic perfusion for extensive disease of the thoracic and thoracoabdominal aorta. Jpn J Thorac Cardiovasc Surg 1999; 47(l):1–5.

    PubMed  CAS  Google Scholar 

  73. Kouchoukos NT, Masetti P, Murphy SE Hypothermic cardiopulmonary bypass and circulatory arrest in the management of extensive thoracic and thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg 2003; 15(4):333–339.

    PubMed  Google Scholar 

  74. Sueda T, Okada K, Orihashi K, Sugawara Y, Kouchi K, Imai K. Cold blood spinal cord plegia for prediction of spinal cord ischemia during thoracoabdominal aneurysm repair. Ann Thorac Surg 2002; 73(4):1155–1159.

    PubMed  Google Scholar 

  75. Winnerkvist A, Bartoli S, Iliopoulos DC, Hess KR, Miller CC, Safi HJ. Spinal cord protection during aortic cross clamping: retrograde venous spinal cord perfusion, distal aortic perfusion, and cerebrospinal fluid drainage. Scand Cardiovasc J 2002; 36(l):6–10.

    PubMed  Google Scholar 

  76. Meylaerts SA, Kalkman CJ, De Haan P, Porsius M, Jacobs MJ. Epidural versus subdural spinal cord cooling: cerebrospinal fluid temperature and pressure changes. Ann Thorac Surg 2000; 70(l):222–227.

    PubMed  CAS  Google Scholar 

  77. Motoyoshi N, Sakurai M, Hayashi T, Aoki M, Abe K, Itoyama Y, et al. Establishment of a local cooling model against spinal cord ischemia representing prolonged induction of heat shock protein. J Thorac Cardiovasc Surg 2001; 122(2):351–357.

    PubMed  CAS  Google Scholar 

  78. Cambria RP, Davison JK, Zannetti S, L’ltalien G, Brewster DC, Gertler JP, et al. Clinical experience with epidural cooling for spinal cord protection during thoracic and thoracoabdominal aneurysm repair. J Vase Surg 1997; 25(2):234–241.

    CAS  Google Scholar 

  79. Motoyoshi N, Takahashi G, Sakurai M, Tabayashi K. Safety and efficacy of epidural cooling for regional spinal cord hypothermia during thoracoabdominal aneurysm repair. Eur J Cardiothorac Surg 2004; 25(1):139–141.

    PubMed  CAS  Google Scholar 

  80. Hollier LH, Moore WM. Avoidance of renal and neurologic complications following thoracoabdominal aortic aneurysm repair. Acta Chir Scand Suppl 1990; 555:129–135.

    PubMed  CAS  Google Scholar 

  81. Wallace L. Con: cerebrospinal fluid drainage does not protect the spinal cord during thoracoabdominal aortic reconstruction surgery. J Cardiothorac Vase Anesth 2002; 16(5):650–652.

    Google Scholar 

  82. Cina CS, Abouzahr L, Arena GO, Lagana A, Devereaux PJ, Farrokhyar F. Cerebrospinal fluid drainage to prevent paraplegia during thoracic and thoracoabdominal aortic aneurysm surgery: a systematic review and meta-analysis. J Vase Surg 2004; 40(l):36–44.

    Google Scholar 

  83. Azizzadeh A, Huynh TT, Miller CC, III, Safi HJ. Reversal of twice-delayed neurologic deficits with cerebrospinal fluid drainage after thoracoabdominal aneurysm repair: a case report and plea for a national database collection. J Vase Surg 2000; 31(3):592–598.

    CAS  Google Scholar 

  84. Bhama JK, Lin PH, Voloyiannis T, Bush RL, Lumsden AB. Delayed neurologic deficit after endovascular abdominal aortic aneurysm repair. J Vase Surg 2003; 37(3):690–692.

    Google Scholar 

  85. Hill AB, Kalman PG, Johnston KW, Vosu HA. Reversal of delayed-onset paraplegia after thoracic aortic surgery with cerebrospinal fluid drainage. J Vase Surg 1994; 20(2):315–317.

    CAS  Google Scholar 

  86. Kasirajan K, Dolmatch B, Ouriel K, Clair D. Delayed onset of ascending paralysis after thoracic aortic stent graft deployment. J Vase Surg 2000; 31(1 Pt 1):196–199.

    CAS  Google Scholar 

  87. Oberwalder PJ, Tiesenhausen K, Hausegger K, Rigler B. Successful reversal of delayed paraplegia after endovascular stent grafting. J Thorac Cardiovasc Surg 2002; 124(6):1259–1260.

    PubMed  Google Scholar 

  88. Estrera AL, Miller CC, III, Huynh TT, Azizzadeh A, Porat EE, Vinnerkvist A, et al. Preoperative and operative predictors of delayed neurologic deficit following repair of thoracoabdominal aortic aneurysm. J Thorac Cardiovasc Surg 2003; 126(5):1288–1294.

    PubMed  Google Scholar 

  89. Jacobs MJ, de Mol BA, Elenbaas T, Mess WH, Kalkman CJ, Schurink GW, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vase Surg 2002; 35(l):30–37.

    Google Scholar 

  90. Kuniyoshi Y, Koja K, Miyagi K, Shimoji M, Uezu T, Arakaki K, et al. Prevention of postoperative paraplegia during thoracoabdominal aortic surgery. Ann Thorac Surg 2003; 76(5):1477–1484.

    PubMed  Google Scholar 

  91. Cambria RP, Clouse WD, Davison JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval. Ann Surg 2002; 236(4):471–479.

    PubMed  Google Scholar 

  92. Coselli JS, Moreno PL. Descending and thoracoabdominal aneurysm. In: Cohn LH, Edmonds HL Jr, editors. Cardiac surgery in the adult. New York: McGraw-Hill; 2003. p. 1169–1190

    Google Scholar 

  93. Williams GM, Roseborough GS, Webb TH, Perler BA, Krosnick T. Preoperative selective intercostal angiography in patients undergoing thoracoabdominal aneurysm repair. J Vase Surg 2004; 39(2):314–321.

    Google Scholar 

  94. Ross SD, Kron IL, Parrino PE, Shockey KS, Kern JA, Tribble CG. Preservation of intercostal arteries during thoracoabdominal aortic aneurysm surgery: a retrospective study. J Thorac Cardiovasc Surg 1999; 118(l):17–25.

    PubMed  CAS  Google Scholar 

  95. Svensson LG, Hess KR, Coselli JS, Safi HJ. Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations. J Vase Surg 1994; 20(2):255–262.

    CAS  Google Scholar 

  96. Kawaharada N, Morishita K, Hyodoh H, Fujisawa Y, Fukada J, Hachiro Y, et al. Magnetic resonance angiographic localization of the artery of Adamkiewicz for spinal cord blood supply. Ann Thorac Surg 2004; 78(3):846–851.

    PubMed  Google Scholar 

  97. Savader SJ, Williams GM, Trerotola SO, Perler BA, Wang MC, Venbrux AC, et al. Preoperative spinal artery localization and its relationship to postoperative neurologic complications. Radiology 1993; 189(1):165–171.

    PubMed  CAS  Google Scholar 

  98. Minatoya K, Karck M, Hagl C, Meyer A, Brassel F, Harringer W, et al. The impact of spinal angiography on the neurological outcome after surgery on the descending thoracic and thoracoabdominal aorta. Ann Thorac Surg 2002; 74(5):S1870–1872.

    PubMed  Google Scholar 

  99. Heinemann MK, Brassel F, Herzog T, Dresler C, Becker H, Borst HG. The role of spinal angiography in operations on the thoracic aorta: myth or reality? Ann Thorac Surg 1998; 65(2):346–351.

    PubMed  CAS  Google Scholar 

  100. Kawaharada N, Morishita K, Fukada J, Yamada A, Muraki S, Hyodoh H, et al. Thoracoabdominal or descending aortic aneurysm repair after preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography. Eur J Cardiothorac Surg 2002; 21(6):970–974.

    PubMed  Google Scholar 

  101. Galla JD, Ergin MA, Lansman SL, McCullough JN, Nguyen KH, Spielvogel D, et al. Use of somatosensory evoked potentials for thoracic and thoracoabdominal aortic resections. Ann Thorac Surg 1999; 67(6):1947–1952.

    PubMed  CAS  Google Scholar 

  102. Jacobs MJ, Mess WH. The role of evoked potential monitoring in operative management of type I and type II thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg 2003; 15(4):353–364.

    PubMed  Google Scholar 

  103. Edwards RH, Killen DA. Prevention of spinal cord ischemia incident to extensive mobilization of the thoracic aorta from the posterior parietes. Surg Forum 1964; 15:285–287.

    PubMed  CAS  Google Scholar 

  104. Isbir CS, Ak K, Kurtkaya O, Zeybek U, Akgun S, Scheitauer BW, et al. Ischemic preconditioning and nicotinamide in spinal cord protection in an experimental model of transient aortic occlusion. Eur J Cardiothorac Surg 2003; 23(6):1028–1033.

    PubMed  Google Scholar 

  105. Sirin BH, Ortac R, Cerrahoglu M, Saribulbul O, Baltalarli A, Celebisoy N, et al. Ischaemic preconditioning reduces spinal cord injury in transient ischaemia. Acta Cardiol 2002; 57(4):279–285.

    PubMed  Google Scholar 

  106. Ueno T, Chao ZL, Okazaki Y, Itoh T. The impact of ischaemic preconditioning on spinal cord blood flow and paraplegia. Cardiovasc Surg 2001; 9(6):575–579.

    PubMed  CAS  Google Scholar 

  107. Zvara DA, Colonna DM, Deal DD, Vernon JC, Gowda M, Lundell JC. Ischemic preconditioning reduces neurologic injury in a rat model of spinal cord ischemia. Ann Thorac Surg 1999; 68(3):874–880.

    PubMed  CAS  Google Scholar 

  108. Bush RL, Lin PH, Lumsden AB. Endovascular treatment of the thoracic aorta. Vase Endovascular Surg 2003; 37(6):399–405.

    Google Scholar 

  109. De Haan P. Pharmacologic adjuncts to protect the spinal cord during transient ischemia. Semin Vase Surg 2000; 13(4):264–271.

    Google Scholar 

  110. Reece TB, Kern JA, Tribble CG, Cassada DC. The role of pharmacology in spinal cord protection during thoracic aortic reconstruction. Semin Thorac Cardiovasc Surg 2003; 15(4):365–377.

    PubMed  Google Scholar 

  111. Hall ED. The effects of glucocorticoid and nonglucocorticoid steroids on acute neuronal degeneration. Adv Neurol 1993; 59:241–248.

    PubMed  CAS  Google Scholar 

  112. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990; 322(20):1405–1411.

    PubMed  CAS  Google Scholar 

  113. Lammertse DP. Update on pharmaceutical trials in acute spinal cord injury. J Spinal Cord Med 2004; 27(4):319–325.

    PubMed  Google Scholar 

  114. Bracken MB. Steroids for acute spinal cord injury. Cochrane Database Syst Rev 2002; (3):CD001046.

    PubMed  Google Scholar 

  115. Hurlbert RJ. The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine 2001; 26(24 Suppl):S39–46.

    Google Scholar 

  116. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 2004; 364(9442):1321–1328.

    PubMed  Google Scholar 

  117. Sauerland S, Maegele M. A CRASH landing in severe head injury. Lancet 2004; 364(9442):1291–1299.

    PubMed  Google Scholar 

  118. Svensson LG. An approach to spinal cord protection during descending or thoracoabdominal aortic repairs. Ann Thorac Surg 1999; 67(6):1935–1936.

    PubMed  CAS  Google Scholar 

  119. Taylor CL, Selman WR, Ratcheson RA. Steal affecting the central nervous system. Neurosurgery 2002; 50(4):679–688.

    PubMed  Google Scholar 

  120. Wadouh F, Wadouh R, Hartmann M, Crisp-Lindgren N. Prevention of paraplegia during aortic operations. Ann Thorac Surg 1990; 50(4):543–552.

    PubMed  CAS  Google Scholar 

  121. Cooley DA. Single-clamp repair of aneurysms of the descending thoracic aorta. Semin Thorac Cardiovasc Surg 1998; 10(l):87–90.

    PubMed  CAS  Google Scholar 

  122. Schepens M, Dossche K, Morshuis W, Heijmen R, van Dongen E, ter Beek H, et al. Introduction of adjuncts and their influence on changing results in 402 consecutive thoracoabdominal aortic aneurysm repairs. Eur J Cardiothorac Surg 2004; 25(5):701–707.

    PubMed  Google Scholar 

  123. Huynh TT, Miller CC, III, Safi HJ. Delayed onset of neurologic deficit: significance and management. Semin Vase Surg 2000; 13(4):340–344.

    CAS  Google Scholar 

  124. Safi HJ, Miller CC, III, Azizzadeh A, Iliopoulos DC. Observations on delayed neurologic deficit after thoracoabdominal aortic aneurysm repair. J Vase Surg 1997; 26(4):616–622.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anyanwu, A., Spielvogel, D., Griepp, R. (2006). Spinal Cord Protection for Descending Aortic Surgery. Clinical and Scientific Basis for Contemporary Surgical Practice. In: Rousseau, H., Verhoye, JP., Heautot, JF. (eds) Thoracic Aortic Diseases. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-38309-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-38309-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25734-9

  • Online ISBN: 978-3-540-38309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics