Skip to main content

The optical properties of atmospheric aerosol and clouds

  • Chapter
Book cover Atmospheric Aerosol Properties

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

  • 1303 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.11 Bibliography

  1. Panchenko M. V. (ed.). Aerosols of Siberia (thematic issue). Optics of the Atmos. and Ocean, 1996, 9(6), 701–892.

    Google Scholar 

  2. Zuev V. E. and Panchenko M. V. (eds). Aerosols of Siberia (thematic issue). Optics of the Atmos. and Ocean, 2000, 13(6–7), 547–706.

    Google Scholar 

  3. Panchenko M. V. (ed.). Aerosols of Siberia (thematic issue). Optics of the Atmos. and Ocean, 2003, 16(5–6), 375–534.

    Google Scholar 

  4. Panchenko M. V. (ed.). Aerosols of Siberia (thematic issue). Optics of the Atmos. and Ocean, 2004, 17(5–6), 375–534.

    Google Scholar 

  5. Almeida G. A., Koepke P., and Shettle E. Atmospheric aerosols: global climatology and radiative characteristics. A. Deepak Publishing, Hampton, VA, 1991, 549pp.

    Google Scholar 

  6. Andreev S. D. and Ivlev L. S. Modelling the optical characteristics of aerosols of the surface layer of the atmosphere in the spectral region 0.3–15 μm. Part I. Principles of model construction. Part II. The choice of the model parameters. Part III. Modelling results. Optics of the Atmos. and Ocean, 1995, 8(5), 788–795; 8(8), 1227–1235 and 1236–1243.

    Google Scholar 

  7. Andreev S. D. and Ivlev L. S. Modelling the optical characteristics of some specific forms of aerosols of the middle atmosphere. Natural and Anthropogenic Aerosols. Proc. of the 2nd Int. Conf, St Petersburg, 27 September–1 October 1999. SPbU Institute of Chemistry, St Petersburg, 2000, pp. 110–112 [in Russian].

    Google Scholar 

  8. Andreev S. D. and Ivlev L. S. The IR radiation absorption by different fractions of atmospheric aerosols. Proc. Russian Acad. Sci., Physics of the Atmos. and Ocean, 1980, 16(9), 907–916 [in Russian].

    Google Scholar 

  9. Andreev S. D., Ivlev L. S., and Poberovsky A. V. The aerosol attenuation of radiation in the 8–13 μm transparency window. Proc. Russian Acad. Sci., Physics of the Atmos. and Ocean, 1974, 10(10), 1104–1107 [in Russian].

    Google Scholar 

  10. Ansmann A., Wagner F., Müller D., Althausen D., Herber A., von Hoyninggen-Huene W., and Wandinger U. European pollution outbreakes during ACE-2: Optical particle properties inferred from multiwavelength lidar and star-Sunphotometry. J. Geophys. Res., 2002, 107(ND15), AAC8/1–AAC8/14.

    Google Scholar 

  11. Arking A. Absorption of solar energy in the atmosphere: Discrepancy between a model and observations. Science, 1996, 273, 779–782.

    Google Scholar 

  12. Belan B. D., Grishin A. I., Matvienko G. G., and Samokhvalov I. V. The Spatial Variability of the Atmospheric Aerosol Characteristics. Novosibirsk, Nauka Publ., 1989, 152 pp. [in Russian].

    Google Scholar 

  13. Belan B. D., Sakerin S. M., Skliadneva T. K., and Kabanov D. M. The urban impact on the aerosol, radiative and meteorological characteristics. Proc. 3rd Int. Conf. Natural and Anthropogenic Aerosols, St Petersburg, 25–27 September 2001. St Petersburg State Univ. Publ., St Petersburg, 2001, pp. 35–37 [in Russian].

    Google Scholar 

  14. Boers, R., Jensen J. B., Krummel P. B., and Gerber H. Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Q. J. R. Meteorol. Soc, 1996, 122, 1307–1339.

    Google Scholar 

  15. Bokoye A. I., Royer A., O’Neill N. T., and McArthur L. J. B. A North American Arctic aerosol climatology using ground-based sunphotometry. Arctic, 2002, 55(3), 215–228.

    Google Scholar 

  16. Bott A. A numerical model of cloud-topped planetary boundary-layer: Impact of aerosol particles on the radiative forcing of stratiform clouds. Q. J. R. Meteorol. Soc, 1997, 123, 631–656.

    Google Scholar 

  17. Cattrell C, Carder K. L., and Gordon H. R. Columnar aerosol single-scattering albedo and phase function retrieved from sky radiance over the ocean: Measurements of Saharan dust. J. Geophys. Res., 2003, 108(D9), AAC10/1–AAC10/11.

    Google Scholar 

  18. Cess R. D. and Zhang M. H. How much solar radiation do clouds absorb? Response. Science, vol. 271, 1133–1134.

    Google Scholar 

  19. Cess, R. D., Zhang M. H., Minnis P., Corsetti L., Dutton E. G., Forgan B. W., Garber D. P., Gates W. L., Morcrette J. J., Potter G., et al. Absorption of solar radiation by clouds: Observation versus models. Science, 1995, 267, 496–499.

    Google Scholar 

  20. Chapursky L. I. The Reflection Properties of Natural Objects in the 400–2500-nm Range Part I. USSR Ministry of Defense Publ., 1986, 160 pp. [in Russian].

    Google Scholar 

  21. Chapursky L. I., Chernenko A. P., and Andreeva N. I. The spectral radiative characteristics of the atmosphere under dust storm conditions. Proc. of the Main Geophysical Observatory (St Petersburg), 1975, 366, 77–84 [in Russian].

    Google Scholar 

  22. Charlock T. P., Alberta T. L., and Whitlock C. H. GEWEX data sets for assesing the budget for the absorption of solar energy by the atmosphere. GEWEX News, WCRP, 1995, 5(4), 9–11.

    Google Scholar 

  23. Chou M.-D., Arking A., Otterman J., and Ridgway W. L. The effect of clouds on atmosphetric absorption of solar radiation. Geoph. Res. Lett., 1995, 22, 1885–1888.

    Google Scholar 

  24. Clarke, A. D. Aerosol light absorption by soot in remote environments. Aerosol Sci. Technoi, 1989, 10, 161–171.

    Google Scholar 

  25. Clarke, A. D. Integrating sandwich: A new method of measurement of the light absorption coefficient for atmospheric aerosols. Appl. Opt., 1982, 21, 3011–3020.

    Google Scholar 

  26. Colarco P. R., Toon O. B., Torres O., and Rasch P. J. Determining the UV imaginary index of refraction of Saharon dust particles from Total Ozone Mapping Spectrometer data using a three-dimensional model of dust transport. J. Geophys. Res., 2002, 107(D16), AAC4/1–AAC4/18.

    Google Scholar 

  27. Colbeck J., Appleby L., Hardman E. J., and Harrison R. M. The optical properties and morphology of cloud-processed carbonaceous smoke. J. Aeros. Science, 1990, 21, 527–538.

    Google Scholar 

  28. Collins W. A global signature of enhanced shortwave absorption by clouds. J. Geophys. Res., 1998, 103(24), 31669–31679.

    Google Scholar 

  29. Crisp D. and Zuffada C. Enhanced water vapor absorption within tropospheric clouds: A partial explanation for anomalous absorption. IRS’ 96. Current problems in Atmospheric Radiation. Proc. of the Int. Radiation Symposium, August, 1996, Fairbanks, Alaska, USA. A. Deepak Publishing, VA, 1997, pp. 121–124.

    Google Scholar 

  30. Curry J. A., Hobbs P. V., King M. D., Randall D. A., Minnis P., Isaac G. A., Pinto J. O., Uttal T., Bucholtz A., Cripe D. G., et al. FIRE Arctic Clouds Experiment. Bull. Amer. Meteorol. Soc, 2000, 81(1), 5–29.

    Google Scholar 

  31. Deschamps P. Y., Bréon F. M., Leroy M., Podaire A., Bricaud A., Buriez J. C, and Sèze G. The POLDER Mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosc. Rem. Sens., 1994, 32, 598–615.

    Google Scholar 

  32. Diabin Yu. P., Ivanov L. S., Tantashev M. V., and Filippov V. L. The optical properties of tropospheric aerosols. Aerosol and Climate, 1981, 1, 99–112 [in Russian].

    Google Scholar 

  33. Donchenko V. K. and Ivlev L. S. On the identification of aerosols of different origin. Natural and Anthropogenic Aerosols, Proc. 3rd Int. Conf., St Petersburg, 24–27 September 2001, pp. 41–51 [in Russian].

    Google Scholar 

  34. Dubovik O., Holben B. N., Lapyonok T., Sinyuk A., Mishcherko M. I., Yang P., and Slutsker I. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett., 2002, 29(10), 54/1–54/4.

    Google Scholar 

  35. Evans W. F. J. and Puckrin E. Near-infrared spectral measurements of liquid water absorption by clouds. Geophys. Res. Lett, 1996, 23, 1941–1944.

    Google Scholar 

  36. Farafonov V. G. and Farafonov Viach. G. The variable separation method in the problem of the electromagnetic radiation scattering by ellipsoids. Proc. 3rd Int. Conf. Natural and Anthropogenic Aerosols, St Petersburg, 24–27 September 2001. St Petersburg State Univ. Publ., St Petersburg, 2001, pp. 104–109 [in Russian].

    Google Scholar 

  37. Feigelson E. M. (ed.). Radiation in the Cloudy Atmosphere. Gidrometeoizdat, Leningrad, 1981, 280 pp. [in Russian].

    Google Scholar 

  38. Fisher K. Measurement of absorption of visible radiation by aerosol particles. Beitrage Phys. Atmos., 1970, 43(4), 244–254.

    Google Scholar 

  39. Fisher K. Mass absorption coefficient of natural aerosol particles in the 0.4–2.4 mm wavelength. Beitrage Phys. Atmos., 1973, 46(2), 89–97.

    Google Scholar 

  40. Francis P. N., Taylor J. P., Hignett P., and Slingo A. Measurements from the U.K. Meteorological office C-130 aircraft relating to the question of enhanced absorption of solar radiation by clouds. IRS’ 96. Current problems in Atmospheric Radiation. Proc. of the Int. Radiation Symp., August, 1996, Fairbanks, Alaska, USA. A. Deepak Publishing, Fairbanks, USA, 1997, pp. 117–120.

    Google Scholar 

  41. Franke K., Ansmann A., Müller D., Althausen D., Ventkataraman C, Reddy M. S., Wagner F., and Scheele R. Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean. J. Geophys. Res., 2003, 108(D2), AAC6/1–AAC6/17.

    Google Scholar 

  42. Gavrilova L. A. and Ivlev L. S. The aerosol models to calculate the radiative characteristics of the atmosphere. Proc. Acad. Sci., Physics of the Atmos. and Ocean, 1995, 31(3), 667–678 [in Russian].

    Google Scholar 

  43. Gavrilova L. A. and Ivlev L. S. The parameterization of microphysical characteristics of aerosol in the radiation models of the atmosphere. Proc. Acad. Sci., Physics of the Atmos. and Ocean, 1996, 32(2), 172–182 [in Russian].

    Google Scholar 

  44. Gavrilova L. A. and Ivlev L. S. The radiative models of atmospheric aerosols. In: K. Ya. Kondratyev (ed.), Problems of Atmospheric Physics and Chemistry of Atmospheric Aerosols. St Petersburg State Univ. Publ., St Petersburg, 1997, 20, pp. 3–178 [in Russian].

    Google Scholar 

  45. Gillette D. and Nagamoto C. Size distribution and single particle composition for two dust storms in Soviet Central Asia in September 1989. In: K. Ya. Kondratyev (ed.), Joint Soviet-American Experiment on Arid Aerosol. Hydrometeoizdat, St Petersburg, 1993, 16(5–6), 340–498 [in Russian].

    Google Scholar 

  46. Ginoux P. Effects of nonsphericity on mineral dust modeling. J. Geophys. Res., 2003, 108(D2), AAC3/1–AAC3/10.

    Google Scholar 

  47. Gomes L. Chemical composition by size of dust collected in dust storms in SW Tadzhikistan, September, 1989. In: K. Ya. Kondratyev (ed.), Joint Soviet-American Experiment on Arid Aerosol. Hydrometeoizdat, St Petersburg, 1993, 17(5–6), 375–534 [in Russian].

    Google Scholar 

  48. Gorodetsky V. V., Maleshin M. N., Petrov S. Ya., Sokolova E. A., Pchelkin V. I., and Solovyev S. P. Small-size multi-channel optical spectrometers. Optical J., 1995, 18(7), 3–9 [in Russian].

    Google Scholar 

  49. Grigoryev Al. A. and Kondratyev K. Ya. Ecodynamics and Geopolicy (Volume 2). Ecological Disasters. St Petersburg Sci. Centre Publ., St Petersburg, 2001, 684 pp. [in Russian].

    Google Scholar 

  50. Harshvardhan M., Ridgway W., Ramaswamy V., Freidenreich S. M., and Batey M. J. Spectral characteristics of solar near-infrared absorption in cloudy atmospheres. J. Geophys. Res., 1998, 103(D22), 28793–28799.

    Google Scholar 

  51. Hayasaka T., Kikuchi N., and Tanaka M. Absorption of solar radiation by stratocumulus clouds: Aircraft measurements and theoretical calculations. J. Appl. Meteor., 1994, 1047–1055.

    Google Scholar 

  52. Hegg D. Comments on ‘The effect of very large drops on cloud absorption. Part I: Parcel models.’ J. Atmos. Sci., 1986, 43(4), 399–400.

    Google Scholar 

  53. Heintzenberg J., Okada K., and Luo B. P. Distribution of optical properties among atmospheric submicrometer particles of given electrical mobilities. J. Geophys. Res., 2002, 107(D11), AAC2/1–AAC2/10.

    Google Scholar 

  54. Hess M., Koepke P., and Schult I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteorol. Soc, 1998, 79(5), 831–844.

    Google Scholar 

  55. Hignett P. and Taylor J. P. The radiative properties of inhomogeneous boundary layer cloud: Observations and modelling. Q. J. R. Meteorol. Soc, 1996, 122, 1341–1364.

    Google Scholar 

  56. Holben B. N., Tanré D., Smirnov A., Eck T. F., Slutsker I., Abuhassan N., Newcomb W. W., Schafer J. S., Chatenet B., Lavenu F., et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 2001, 106(D11), 12067–12097.

    Google Scholar 

  57. Imre, D. G., Abramson, E. N., and Daum, P. H. Quantifying cloud-induced short-wave absorption: An examination of uncertainties and recent arguments for large excess absorption. J. Appl. Met., 1996, 35, 1191–2010.

    Google Scholar 

  58. Ivanov V. P. Applied Atmospheric Optics in Thermal Imaging. Kazan’ New Knowledge Publ., Kazan’, 2000, 356 pp. [in Russian].

    Google Scholar 

  59. Ivlev L. S. and Popova S. I. The complex refraction index of the dispersed phase of atmospheric aerosol. Proc. USSR Acad. Sci., Physics of the Atmos. and Optics, 1973, 9(10), 1034–1043 [in Russian].

    Google Scholar 

  60. Ivlev L. S. and Popova S. I. The impact of humidity of the values of the optical constants of the atmospheric aerosol substance. Proc. of the USSR High School, ser. Physics, 1974, 5, 11–15 [in Russian].

    Google Scholar 

  61. Ivlev L. S. and Popova S. I. The optical constants of the atmospheric aerosol substant. Proc. of the USSR High School, ser. Physics, 1975, 5, 91–97 [in Russian].

    Google Scholar 

  62. Ivlev L. S. and Andreev S. D. The Optical Properties of Atmospheric Aerosols. Leningrad State Univ. Publ., Leningrad, 1986, 359 pp. [in Russian].

    Google Scholar 

  63. Ivlev L. S. and Korostina O. M. Calculations of the optical characteristics of stratospheric aerosol particles of a 2-layer structure. Proc. USSR Acad. Sci., Physics of the Atmos. and Optics, 1994, 30(6), 802–806 [in Russian].

    Google Scholar 

  64. Ivlev L. S., Zhukov V. M., Korostina O. M., Leyva Contrares A., Mulia Velaskes A., and Bravo-Cabrera J. L. Specified optical characteristics of aerosols in the surface layer over Mexico City. Optics of the Atmos. and Ocean, 1994, 7(9), 1202–1206.

    Google Scholar 

  65. Ivlev L. S., Melnikova I. N., Korostina O. M., and Schultz A. I. An assessment of the microphysical parameters of a stratus cloud based on aircraft radiation measurements. Optics of the Atmos. and Ocean, 1996, 9(10), 1379–1385.

    Google Scholar 

  66. Ivlev L. S. and Dovgaliuk Yu. A. Physics of the Atmospheric Aerosol Systems. St Petersburg State Univ. Press, St Petersburg, 1999, 258 pp. [in Russian].

    Google Scholar 

  67. Ivlev L. S. Modelling the optical characteristics of atmospheric aerosol. Optical J., 2001, 68(4), 9–15 [in Russian].

    Google Scholar 

  68. Ivlev L. S., Vasilyev A. V., Belan B. D., Panchenko M. V., and Terpugova S. A. The optical-microphysical models of the urban aerosols. Proc. 3rd Int. Conf., Natural and Anthropogenic Arerosols, Sankt-Petersburg, 24–27 September 2001. St Petersburg State Univ. Press, St Petersburg, pp. 161–170 [in Russian].

    Google Scholar 

  69. Jarzembski M. A., Norman M. L., Fuller K. A., Srivastava V., and Cutten D. R. Complex refractive index of ammonium nitrate in the 2–20 μm spectral range. Appl. Opt., 2003, 42(6), 922–930.

    Google Scholar 

  70. Kaul B. V., Volkov S. N., and Samokhvalov I. V. The results of studies of crystal clouds via lidar soundings of light backscattering matrices. Optics of the Atmos. and Ocean, 2003, 16(4) 354–361.

    Google Scholar 

  71. Kiehl J. T. et al. Sensitivity of a GCM climate to enhanced shortwave cloud absorption. J. dim., 1995, 8, 2200–2212.

    Google Scholar 

  72. King M. D., Si-Chee Tsay, and Platnick S. In situ observations of the indirect effects of aerosols on clouds. In: R. J. Charlson and J. Heitzenberg (eds), Aerosol Forcing of Climate. Wiley, Wshington, 1995, pp. 227–248.

    Google Scholar 

  73. Kneizis F. X., Abreu L. W., Anderson G. P., Chetwynd G. H., Shettle E. P., Berk A., Bernstein L. S., Robertson D. S., Acharya P., Rothman L. S., et al. The Modtran 2/3. Report and Lowtran 7 Model. Phillips Laboratory, Hanscon, Massachusetts, 1996, 230 pp.

    Google Scholar 

  74. Kondratyev K. Ya., Ivlev L. S., and Nikolsky G. A. Complex studies of stratospheric aerosol. Meteorology and Hydrology, 1974, 9, 16–26 [in Russian].

    Google Scholar 

  75. Kondratyev K. Ya., Moskalenko N. I., and Terzi V. F. A closed modelling of the optical characteristics of atmospheric aerosol. Annals USSR Acad. Set, 1980, 253(6), 1354–1356 [in Russian].

    Google Scholar 

  76. Kondratyev K. Ya., Moskalenko N. I., Terzi V. F., and Skvortsova S. Ya. Modelling the optical properties of industrial aerosol. Annals USSR Acad. Sci., 1981, 259(6), 1354–1356 [in Russian].

    Google Scholar 

  77. Kondratyev K. Ya., Moskalenko N. I., Terzi V. F., and Skvortsova S. Ya. Modelling the optical characteristics of atmospheric aerosol. In: K. Ya. Kondratyev (ed.), Aerosol and Climate. Gidrometeoizdat, Leningrad, 1981, pp. 130–153 [in Russian].

    Google Scholar 

  78. Kondratyev K. Ya., Moskalenko N. I., and Terzi V. F. Modelling the optical characteristics of stratospheric aerosol. Annals USSR Acad. Sci., 1982, 262(5), 1092–1095 [in Russian].

    Google Scholar 

  79. Kondratyev K. Ya., Moskalenko N. I., and Pozdniakov D. V. Atmospheric Aerosol. Gidrometeoizdat, Leningrad, 1983, 224 pp. [in Russian].

    Google Scholar 

  80. Kondratyev K. Ya. Climate Shocks: Natural and Anthropogenic. Wiley, New York, 1988, 296 pp.

    Google Scholar 

  81. Kondratyev K. Ya., Binenko V. I., and Melnikova I. N. Solar radiation absorption by clouds in the visible spectral region. Meteorology and Hydrology, 1996, 2, 14–23 [in Russian].

    Google Scholar 

  82. Kondratyev K. Ya., Binenko V. I., and Melnikova I. N. Absorption of solar radiation by clouds and aerosols in the visible wavelength region. Meteorology and Atmospheric Physics, 1997, No. 0/319, 1–10.

    Google Scholar 

  83. Kondratyev K. Ya. and Galindo I. Volcanic Activity and Climate. A. Deepak Publ., Hampton, U.S.A., 1997, 382 pp.

    Google Scholar 

  84. Kondratyev K. Ya. Multidimensional Global Change. Wiley-Praxis, Chichester, U.K., 1998, 761 pp.

    Google Scholar 

  85. Kondratyev K. Ya. Global climate change and the Kyoto Protocol. Idöjárás, 106(2), 1–37.

    Google Scholar 

  86. Kondratyev K. Ya. High-latitude environmental dynamics in the context of global change. Idöjárás, 2003, 107(1), 1–29.

    Google Scholar 

  87. Kondratyev K. Ya., Krapivin V. F., and Varotsos C. A. Global Carbon Cycle and Climate Change. Springer-Praxis, Chichester, U.K., 2003, 385 pp.

    Google Scholar 

  88. Kondratyev K. Ya., Binenko V. I., and Melnikova I. N. Absorption of Solar Radiation by Clouds and Aerosols in the Visible Wavelength Region at Different Geographic Zones. CAS/WMO working group on numerical experimentation, WMO, Geneva, 6 pp.

    Google Scholar 

  89. Kondratyev K. Ya. Properties, Formation Processes and Consequences of the Impact Atmospheric Aerosol. St Petersburg Centre of Ecological Safety, St Petersburg, 2005, 450 pp. [in Russian].

    Google Scholar 

  90. Krekov G. M. and Rakhimov R. F. The Optical-Radar Model of the Continental Aerosol. Nauka Publ., Novosibirsk, 1982, 198 pp. [in Russian].

    Google Scholar 

  91. Latfulova L. B., Starikov A. V., and Beresnev S. A. The absorbing properties of atmospheric aerosol: Analysis of microphysical optical characteristics. Optics of the Atmos. and Ocean, 2001, 14(1), 69–75 [in Russian].

    Google Scholar 

  92. Lelevkin V. M., Orozobakov T. O., and Chen B. B. Studies of the stratospheric aerosol layer over Central Asia using lidar sounding. Dastan (Bishkek), 2001, 31, 8–21 [in Russian].

    Google Scholar 

  93. Li F. and Ramanathan V. Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res., 2002, 107(D16), AAC2/1–AAC2/13.

    Google Scholar 

  94. Liao H. and Seinfield J. H. Effect of clouds on direct aerosol radiative forcing of climate. J. Geophys. Res., 1998, 103(D4), 3781–3788.

    Google Scholar 

  95. Liubovtseva Yu. S., Gabelko L. B., and Yaskovich L. G. The aerosol absorption in the 0.25–25-µm spectral region. In: E. M. Feggelson (ed.), Optics of the Atmosphere and Aerosol. Nauka Publ., Moscow, 1986, pp. 174–204 [in Russian].

    Google Scholar 

  96. Liubovtseva Yu. S., Yudin N. P., and Yaskovich L. G. The composition and optical properties of the submicron fraction of atmospheric aerosol. In: E. M. Feggelson (ed.), Optics of the Atmosphere and Aerosol. Nauka Publ., Moscow, 1986, pp. 65–81 [in Russian].

    Google Scholar 

  97. Liubovtseva Yu. S., Yudin N. I., and Yaskovich L. G. Proceedings of Second Ail-Union Conference on the Atmospheric Optics, Tomsk, 2–5 April 1983. Siberian Branch of Russian Academy of Sciences Publ. Tomsk, 1983, pp. 67–69 [in Russian].

    Google Scholar 

  98. Livingston J. M., Russel P. B., Reid J. S., Rodemann J., Schmid B., Allen D. A., Torres O., Levy R. C, Remer L. A., Holben B. N., et al. Airborne Sun photometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment and comparison with land, aircraft, and satellite measurements. J. Geophys. Res., 2003, 108(D19), PRD4/1–PRD4/23.

    Google Scholar 

  99. Lubin D., Chen J.-P., Pilewskie P., Ramanathan V., and Valero P. J. Microphysical examination of excess cloud absorption in the tropical atmosphere. J. Geophys. Res., 1996, 101(D12), 16961–16972.

    Google Scholar 

  100. Makienko E. V., Kabanov D. M., Rakhimov R. F., and Sakerin S. M. The microphy sical features of the aerosol component in different regions of the Atlantic. Optics of the Atmos. and Ocean, 2004, 17(5–6), 437–443 [in Russian].

    Google Scholar 

  101. Marshak A., Davis A., Wiscombe W., and Cahalan R. Radiative smoothing in fractal clouds. J. Geophys. Res., 1995, 100(D18), 26247–26261.

    Google Scholar 

  102. Mazin I. P., Monakhova N. A., and Shugaev V. F. The vertical distribution of water content and optical characteristics in continental stratus clouds. Meteorology and Hydrology, 1996, 9, 14–34 [in Russian].

    Google Scholar 

  103. Melnikova I. N. The spectral optical parameters of cloud layers. Theory. Part I. Optics of the Atmos. and Ocean, 1992, 5(2), 178–185 [in Russian].

    Google Scholar 

  104. Melnikova I. N. and Mikhailov V. V. An assessment of the optical characteristics of cloud layers. Annals of RAS, 1993, 328(3), 319–321 [in Russian].

    Google Scholar 

  105. Melnikova I. N. A study of the impact of multiple scattering on the true light absorption in clouds with the use of calculations by the Monte Carlo method. Natural and Anthropogenic Aerosols, Proc. 1st Int. Conf., Sankt-Petersburg, 29 September–4 October 1997. St Petersburg State Univ. Publ., St Petersburg, 1998, pp. 298–307 [in Russian].

    Google Scholar 

  106. Melnikova I. N. and Fedorova E. Yu. The vertical profile of the optical parameters in the cloud layer. In: LSU Coll. Problems of Atmospheric Physics (Issue 20), 1997, pp. 261–272 [in Russian].

    Google Scholar 

  107. Melnikova I. N. and Domnin P. I. An assessment of the optical parameters of a homogeneous optically thick cloud layer. Optics of the Atmos. and Ocean, 1997, 10(7), 734–740 [in Russian].

    Google Scholar 

  108. Melnikova I. N. The vertical profile of the spectral coefficients of scattering and absorption of the stratified cloudiness. Optics of the Atmos. and Ocean, 1998, 11(1), 5–11 [in Russian].

    Google Scholar 

  109. Melnikova I. N., Domnin P.I., and Rodionov V. F. An assessment of the optical parameters of the cloud layer from measurements of reflected and transmitted solar radiation. Izv. Russian Acad. Sci., ser. Physics of the Atmos. and Ocean, 1998, 34(5), 669–676 [in Russian].

    Google Scholar 

  110. Melnikova I. N. and Vasilyev A. V. Short-Wave Solar Radiation in the Earth’s Atmo sphere. Springer, Berlin, 2005, 303 pp.

    Google Scholar 

  111. Minin I. N. Theory of Radiation Transfer in Planetary Atmospheres. Nauka Publ., Moscow, 1988, 264 pp. [in Russian].

    Google Scholar 

  112. Minnet P. The influence of solar zenith angle and cloud type on cloud radiative forcing at the surface in the Arctic. J. Clim., 1999, 12, 147–158.

    Google Scholar 

  113. Moskalenko N. I., Terzi V. D., and Skvortsova S. Ya. The optical characteristics of aerosol formations. In: K. Ya. Kondratyev (ed.), Aerosol and Climate. Gidrometeoizdat, Leningrad, 1991, pp. 154–165 [in Russian].

    Google Scholar 

  114. Nakajima T. Y. and Nakajima T. Wide-area determination of cloud microphysical properties from NOAA AVHRR Measurements for FIRE and ASTEX regions. J. Atmos. Sci., 1995, 52, 4043–4059.

    Google Scholar 

  115. Nakajima T., King M. D., Spinhirne J. D., and Radke L. F. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II. Marine stratocumulus observations. J. Atmos. Sci., 1991, 48, 728–750.

    Google Scholar 

  116. Nikitinskaya N. I., Barteneva O. D., and Veselova L. K. On the variability of the spectral optical aerosol thickness of the atmosphere under high transparency conditions. Proc. USSR Acad. Sci., Physics of the Atmos. and Ocean, 1973, 10(4), 437–442 [in Russian].

    Google Scholar 

  117. Noone K. J., Targino A., Olivares G., Glantz P., and Jansson J. Aerosols and their role in the earths energy balance. Global Change Newsletter, 2004, No. 59, 7–10.

    Google Scholar 

  118. O’Hirok, Gautier C. Modelling enhanced atmospheric absorption by clouds. IRS’ 96. Current problems in Atmospheric Radiation. Proc. Int. Radiation Symp., August, 1996, Fairbanks, Alaska, USA. A. Deepak Publishing, VA, 1997, pp. 132–134.

    Google Scholar 

  119. Ostrom E. and Noone K. J. Vertical profiles of aerosol scattering and absorption measured in situ during the North Atlantic Aerosol Characterization Experiment (ACE-2). Tellus Ser. B — Chemical and Phys. Meteorology, 52(2), 526–545.

    Google Scholar 

  120. Panchenko M. V., Sviridenkov M. A., Terpugova S. A., and Kozlov V. S. Active spectronephelometry in studies of microphysical characteristic of submicron aerosol. Optics of the Atmos. and Ocean, 2004, 17(5–6), 428–436.

    Google Scholar 

  121. Pilewskie, P. and Valero F. P. J. How much solar radiation do clouds absorb? Response. Science, 1996, 271, 1134–1136.

    Google Scholar 

  122. Pilewskie P. and Valero F. P. J. Direct observations of excess solar absorption by clouds. Science, 1995, 267, 1626–1629.

    Google Scholar 

  123. Poetzsch-Heffter C., Liu Q., Ruprecht E., and Simmer C. Effect of cloud types on the Earth radiation budget calculation with the ISCCP Cl dataset: Methodology and initial results. J. Climate, 1995, 8, 829–843.

    Google Scholar 

  124. Rakhimov R. F., Uzhegov V. N., Makienko E. V., and Pkhalagov Yu. A. The microphysical interpretation of the seasonal and diurnal variability of the spectral dependence of the coefficient of aerosol attenuation along the surface routes. Optics of the Atmos. and Ocean, 2004, 17(5–6), 386–404 [in Russian].

    Google Scholar 

  125. Ramanathan V., Subasilar B., Zhang G. J., Conant W., Cess R. D., Kiehl J. T., Grassl G., and Shi L. Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 1995, 267, 500–503.

    Google Scholar 

  126. Ramanathan V. and Vogelman A. M. Greenhouse effect, atmospheric solar absorption and the Earth’s radiation budget: From the Arrhenius-Langley era to the 1990s. Ambio, 1997, 26(1), 38–46.

    Google Scholar 

  127. Ramaswamy V. and Freidenreich S. M. A high-spectral resolution study of the near-infrared solar flux disposition in clear and overcast atmospheres. J. Geophys. Res., 1998, 103(D18), 23255–23273.

    Google Scholar 

  128. Reid J. S. and Maring H. B. Foreword to special section on the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res., 2003, 108(D19), PRD1/1–PRD1/2.

    Google Scholar 

  129. Rosenberg G. V., Malkevich M. S., Malkova V. S., and Siachenov V. I. An assessment of the optical characteristics of clouds from measurements of the reflected solar radiation by Kosmos-320 satellite. Proc. USSR Acad. Sci., Physics of the Atmos. and Ocean, 1974, 10, 14–24 [in Russian].

    Google Scholar 

  130. Rosenberg G. V., Gorchakov G. I., Georgievsky Yu. S., and Liubovtseva Yu. S. The Optical Parameters of Atmospheric Aerosol. Nauka Publ., Moscow, 1980, 261 pp.

    Google Scholar 

  131. Rublev A. N., Trotsenko A. N., and Romanov P. Yu. Use of the AVHRR satellite radiometer data to assess the optical thickness of cloudiness. Izv. Russian Acad. Sci., ser. Physics of the Atmosphere and Ocean, 1997, 33(5), 670–675 [in Russian].

    Google Scholar 

  132. Savijärvi H., Arola A., and Risnen P. Short-wave optical properties of precipitating water clouds. Q. J. R. Meteorol. Soc., 1997, 123, 883–899.

    Google Scholar 

  133. Shettle E. P. The data were tabulated by E. P. Shettle of the Naval Research Laboratory and were used to generate the aerosol models which are incorporated into the LOWTRAN, MODTRAN and FASCODE computer codes [data from HITRAN-96 CD ROM media, 1996].

    Google Scholar 

  134. Shimota A., Kobayashi H., and Wada K. Retrieval for physical parameters of aerosols in an urban area by ground-based FTIR measurement. J. Geophys. Res., 2002, 107(D14), AAC6/1–AAC6/10.

    Google Scholar 

  135. Skuratov S. N., Vinnichenko N. K., and Krasnova T. M. Measurements of upward and downward shortwave radiation fluxes with the use of stratospheric aircraft ‘Geofizika’ in the tropics (Seychelles, February–March, 1999). In: The CIS Int. Symp. ‘Atmospheric Radiation’ (ISAR-99). St Petersburg State Univ. Press, St Petersburg, 1999, pp. 58–59 [in Russian].

    Google Scholar 

  136. Stephens G. and Tsay S. C. On the cloud absorption anomaly. Quart. J. Roy. Meteorol. Soc., 1990, 116, 671–704.

    Google Scholar 

  137. Stephens G. Anomalous shortwave absorption in clouds. GEWEX News. WCRP, 1995, 5(4), 5–6.

    Google Scholar 

  138. Stephens G. How much solar radiation do clouds absorb? Technical comments. Science, 1996, 271, 1131–1133.

    Google Scholar 

  139. Taylor J. P., Edwards J. M., Glew M. D., Hignett P., and Slingo A. Studies with a flexible new radiation code. II. Comparison with aircraft short-wave observations. Q. J. R. Meteorol. Soc., 1996, 122, 839–861.

    Google Scholar 

  140. Titov G. A. Numerical modelling of the radiative characteristics of a broken cloudiness. Optics of the Atmos. and Ocean, 1988, 1(4), 3–18.

    Google Scholar 

  141. Titov G. A. and Zhuravleva T. B. Absorption of solar radiation in broken clouds. Proc. of the Fifth ARM Science Team Meeting San Diego, California, USA, 19–23 March, 1995, pp. 397–340.

    Google Scholar 

  142. Titov G. A. and Kasyanov E. I. Radiative properties of heterogeneous stratocumulus clouds with stochastic geometry of the upper boundary. Optics of the Atmos. and Ocean, 1997, 10(8), 843–855.

    Google Scholar 

  143. Twohy C. H., Clarke A. D., Warren S. G., Radke L. F., and Charlson R. J. Light-absorbing material extracted from cloud droplets and its effect on cloud albedo. J. Geophys. Res., 1989, 94(D6), 8623–8631.

    Google Scholar 

  144. Valero F. P. J., Cess R. D., Zhang M., Pope S. K., Bucholtz A., Bush B., and Vitko J., Jr. Absorption of solar radiation by the cloudy atmosphere: Interpretations of collocated aircraft measurements. J. Geophys. Res., 1997, 102(D25), 29917–29927.

    Google Scholar 

  145. Vasilyev A. V., Melnikova I. N., and Mikhailov V. V. The vertical profile of spectral fluxes of scattered solar radiation in a stratus cloud from results of aircraft measurements. Izv. Russian Acad Sci., ser. Physics of the Atmos. and Ocean, 1994, 30(5), 661–665 [in Russian].

    Google Scholar 

  146. Vasilyev A. V. and Ivlev L. S. A universal algorithm to calculate the optical characteristics of 2-layer spherical particles with the homogeneous nucleus and shell. Optics of the Atmos. and Ocean, 1996, 9(12), 1552–1561.

    Google Scholar 

  147. Vasilyev A. V. and Ivlev L. S. Numerical modelling of the spectral aerosol light scattering indicatrix. Optics of the Atmos. and Ocean, 1996, 9(1), 129–133.

    Google Scholar 

  148. Vasilyev A. V. and Ivlev L. S. Empirical models and optical characteristics of aerosol ensembles of 2-layer spherical particles. Optics of the Atmos. and Ocean, 1997, 10(8), 856–868.

    Google Scholar 

  149. Vasilyev A. V. and Ivlev L. S. An optical statistical aerosol model of the atmosphere for the region of the Ladoga Lake. Optics of the Atmos. and Ocean, 2000, 13(2), 198–203.

    Google Scholar 

  150. Vasilyev A. V. and Ivlev L. S. On the optical properties of polluted clouds. Optics of the Atmos. and Ocean, 2002, 15(2), 157–159.

    Google Scholar 

  151. Vasilyev A. V. and Melnikova I. N. The Shortwave Solar Radiation in the Earth’s Atmosphere. Calculations. Measurements. Interpretation. St Petersburg State Univ. Press, St Petersburg, 2002, 388 pp. [in Russian].

    Google Scholar 

  152. Vasilyev O. B., Grishechkin V. S., Kashin F. V., and Kondratyev, K. Ya. Studies of the atmospheric spectral transparency, spectral scattering indicatrices, and determination of aerosol parameters. In: I. N. Minin (ed.), Problems of Atmospheric Physics (Issue 17). LSU Publ., Leningrad, 1982, pp. 230–246 [in Russian].

    Google Scholar 

  153. Vasilyev O. B. Spectral shortwave radiation fluxes in the atmosphere and some applied problems. Doctoral thesis. Tomsk State Univ., Tomsk, 1986, 344 pp [in Russian].

    Google Scholar 

  154. Vasilyev O. B., Grishechkin V. S., Kovalenko A. P. The spectral information-measurement system to study the shortwave radiation field in the atmosphere from the surface and aircraft. In: K. Ya. Kondratyev (ed.), The Complex Remote Sensing of Lakes. Nauka Publ., Leningrad, 1987, pp. 225–228 [in Russian].

    Google Scholar 

  155. Vasilyev O. B., Ivlev L. S., Muhlia Velazquez A., Leyva Contreras A., and Peralta y Fabi R. Influence of aerosol on radiative transfer in the polluted atmosphere. IRS — 92: Current problems in atmospheric radiation. Proc. of the Int. Radiation Symp., Tallinn, Estonia, 3–8 August 1992. A. Deepak Publ., Hampton, USA, 1993, pp. 195–198.

    Google Scholar 

  156. Yamanouchi T. and Charlock T.P. Comparison of radiation budget at the TOA and surface in the Antarctic from ERBE and ground surface measurements. J. Climate, 1995, 8, 3109–3120.

    Google Scholar 

  157. Waggoner, R. E., Weiss A. P., Ahlquist N. C, Covert D. S., and Charlson R. J. Optical characteristics of atmospheric aerosols. Atmos. Environ., 1981, 15, 1891–1909.

    Google Scholar 

  158. Wiscombe W. J., Welch R. M., and Hall W. D. The effect of very large drops on cloud absorption. Part I: Parcel models. J. Atmos. Sci., 1984, 41, 1336–1355.

    Google Scholar 

  159. Wiscombe W. J. An absorbing mystery. Nature (GB), 1995, 376, 466–467.

    Google Scholar 

  160. Zhang M. H., Lin W. Y., and Kiehl J. T. Bias of atmospheric shortwave absorption in the NCAR Community Climate Models 2 and 3: Comparison with monthly ERBE/GEBA measurements. J. Geophys. Res. 1998, 103, 8919–8925.

    Google Scholar 

  161. Zhanging Li, Barker H. W., and Moreau L. The variable effect of clouds on atmospheric absorption of solar radiation. Nature, 1995, 376, 486–490.

    Google Scholar 

  162. Zuev V. E. and Krekov G. M. Optical Models of the Atmosphere. Gidrometeoizdat, Leningrad, 1986, 256 pp. [in Russian].

    Google Scholar 

  163. Zuev V. E. and Kabanov M. V. Optics of Atmospheric Aerosol. Gidrometeoizdat, Leningrad, 1987, 264 pp. [in Russian].

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2006). The optical properties of atmospheric aerosol and clouds. In: Atmospheric Aerosol Properties. Springer Praxis Books. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37698-4_7

Download citation

Publish with us

Policies and ethics