• Robert G. Strom
  • Ann L. Sprague
Part of the Springer Praxis Books book series (PRAXIS)


Mercury may provide answers to questions regarding the formation and evolution of our Solar System. This article reviews what is known about Mercury from the Mariner 10 flybys of 1974 and 1975 and from thirty years of ground-based telescopic observations with ever improving instrumentation. Many new discoveries, such as possible water ice at Mercury’s polar regions, make the anticipation of the arrival of the MESSENGER spacecraft for its first flyby of Mercury in 2008 even more intense.


Solar Wind Terrestrial Planet Solar Nebula Coherent Backscatter Late Heavy Bombardment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumgardner, J., Mendillo, M. and Wilson, J.K., 2000. A digital high definition imaging system for spectral studies of extended planetary atmospheres: 1. Initial result in white light showing features on the hemisphere of Mercury unimaged by Mariner 10. Astron. J. 119, 2458–2464.CrossRefADSGoogle Scholar
  2. Benz, W., W.L. Slattery, and A.G.W. Cameron, 1988. Collisional stripping of Mercury’s mantle. Icarus 74, 516–528.CrossRefADSGoogle Scholar
  3. Bida, T.A., R.M. Killen, and T.H. Morgan, 2000. Discovery of calcium in Mercury’s atmosphere. Nature 404, 159–161.CrossRefADSGoogle Scholar
  4. Blewett, D.T., P.G. Lucey, B.R. Hawke, G.G. Ling, and M.S. Robinson, 1997. A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon. Icarus 129, 217–231.CrossRefADSGoogle Scholar
  5. Broadfoot, A.L., Kumar, S., Belton, M. and McElroy, M.B., 1974. Mercury’s atmosphere from Mariner 10: Preliminary results. Science 185, 166–169. Broadfoot, A.L., D.E. Shemansky, and S. Kumar, 1976. Mariner 10: Mercury atmosphere, Geophys. Res. Lett. 3, 577–580.ADSCrossRefGoogle Scholar
  6. Butler, B., Muhleman, D. and Slade, M., 1993. Mercury: Full-disk radar images and the detection and stability of ice at the north pole. J. Geophys. Res. 98, 15,003–15,023.ADSGoogle Scholar
  7. Butler, B.J. 1997. The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res. 102(E8), 19,283–19,291.CrossRefADSGoogle Scholar
  8. Cheng, A.F., Johnson, R.E., Krimigis, S.M. and Lanzerotti, L.J., 1987. Magnetosphere, Exosphere, and Surface of Mercury. Icarus 71, 430–440.CrossRefADSGoogle Scholar
  9. Cameron, A. G. W., 1985. The partial volatilization of Mercury. Icarus 64, 285–294.CrossRefADSGoogle Scholar
  10. Cooper, B., A. Potter, R. Killen, and T. Morgan, 2001. Mid-Infrared Spectra of Mercury. J. Geophysical Res. 106(E12), 32,803–32,814.ADSCrossRefGoogle Scholar
  11. Crider, D. H. and R. M. Killen, 2005. Burial rate of Mercury’s polar volatile deposits. Geophys. Res. Lett. 32(L12201), 10.1029/2005GL022689.Google Scholar
  12. Davies, M.E., S.E. Dwornik, D.E. Gault, and R.G. Strom, 1978. NASA SP-423, Atlas of Mercury, Scientific and Technical Information Office, National Aeronautics and Space Administration, US Government Printing Office, Washington, D.C.Google Scholar
  13. Fegley, B., Jr. and A.G.W. Cameron, 1987. A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett. 82, 207–222.CrossRefADSGoogle Scholar
  14. Gold, R. E., et al., 2001. The MESSENGER mission to Mercury: scientific payload. Planet. Space Sci. 49, 1467–1479.CrossRefADSGoogle Scholar
  15. Goldsten, J.O., et al., 2005. The MESSENGER Gamma-Ray/Neutron Spectrometer. Space Sci. Rev. submitted.Google Scholar
  16. Goldstein, B.D., Suess, S.T. and Walker, R.J., 1981. Mercury: Magnetospheric processes and the atmospheric supply and loss rate. J. Geophys. Res. 86, 5485–5499.ADSCrossRefGoogle Scholar
  17. Harmon, J.K. and Slade, M.A., 1992. Radar mapping of Mercury: Full-disk images and polar anomalies. Science 258, 640–642.ADSCrossRefGoogle Scholar
  18. Harmon, J.K., M.A. Slade, R.A. Velez, A. Crespo, M.J. Dryer, and J.M. Johnson, 1994. Radar mapping of Mercury’s polar anomalies. Nature 369, 213–215.CrossRefADSGoogle Scholar
  19. Harmon, J.K., P.J. Perillat, and M.A. Slade, 2001. High-Resolution radar imaging of Mercury’s north pole. Icarus 149, 1–15.CrossRefADSGoogle Scholar
  20. Harmon, J.K., and D.B. Campbell, 2002. Mercury Radar Imaging at Arecibo in 2001. Lunar and Planetary Science Conference 33, 11–15 March 2002, Houston, Texas, Abstract #1858.Google Scholar
  21. Hood, L.L. and Schubert, G., 1979. Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res. 84, 2641–2647.ADSCrossRefGoogle Scholar
  22. Hunten, D.M., T.H. Morgan, and D. Shemansky, 1988. The Mercury atmosphere. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 562–612.Google Scholar
  23. Ip, W.H., 1987. Dynamics of electrons and heavy ions in Mercury’s magnetosphere. Icarus 71, 441–447.CrossRefADSGoogle Scholar
  24. Jeanloz, R., D.L. Mitchell, A.L. Sprague, and I. de Pater, 1995. Evidence for a basalt-free surface on Mercury and implications for internal heat. Science 268, 1455–1457.ADSCrossRefGoogle Scholar
  25. Killen, R.M., T.H. Morgan, and A.E. Potter, 1990. Spatial distribution of sodium vapor in the atmosphere of Mercury. Icarus 85, 145–167.CrossRefADSGoogle Scholar
  26. Killen, R.M., A.E. Potter, A. Fitzsimmons, and T.H. Morgan, 1999. Sodium D2 line profiles: clues to the temperature structure of Mercury’s exosphere. Plan. Space Sci., 47, 1449–1458.CrossRefADSGoogle Scholar
  27. Killen, R.M., T.A. Bida, and T.H. Morgan, 2005. The calcium exosphere of Mercury, Icarus 173, 300–311.CrossRefADSGoogle Scholar
  28. Lewis, J. S., 1988. Origin and Composition of Mercury. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 651–667.Google Scholar
  29. Margot, J.L., S.J. Peale, R.F. Jurgens, M.A. Slade, and I.V. Holin, 2004. Earth-based radar measurements of Mercury’s longitude librations. In 35th COSPAR Scientific Assembly, 18–25 July 2004, Paris, France, p.3693.Google Scholar
  30. McClintock, W. and M.R. Lankton, 2005. The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER Mission. Space Sci. Rev. submitted.Google Scholar
  31. McCord, T.B., and R.N. Clark, 1979. The Mercury soil: Presence of Fe2+. J. Geophys. Res. 84, 7664–7668.ADSGoogle Scholar
  32. McGrath, M.A., Johnson, R.E. and Lanzerotti, L.J., 1986. Sputtering of sodium on the planet Mercury. Nature 323, 696–696.CrossRefADSGoogle Scholar
  33. Melosh, H.J., and W.B. McKinnon, 1988. The tectonics of Mercury. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 374–400.Google Scholar
  34. Mitchell, D. and I. de Pater 1994. Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm. Icarus 110, 2–32.CrossRefADSGoogle Scholar
  35. Moses, J. I., K. Rawlins, K. Zahnle, and L. Dones, 1999. External Sources of Water for Mercury’s Putative Ice Deposits. Icarus 137, 197–221.CrossRefADSGoogle Scholar
  36. Ness, N.F., Behannon, K.W., Lepping, R.P., Whang, Y.C. and Schatten., K.H., 1974. Observations at Mercury encounter by the plasma science experiment on Mariner 10. Science 185, 159–170.ADSCrossRefGoogle Scholar
  37. Ness, N.F., K.W. Behannon, R.P. Lepping, and Y.C. Whang, 1975. Magnetic field of Mercury confirmed. Nature 255, 204–205.CrossRefADSGoogle Scholar
  38. Nobel, S.K., and C.M. Pieters, 2001. Space Weathering in the Mercurian Environment. In Mercury: Space Environment, Surface, and Interior. Proceedings of a workshop held at The Field Museum, 4–5 October, 2001, Chicago, Illinois. LPI Contribution No. 1097, Lunar and Planetary Science Institute, Houston, Texas, pp. 68–69.Google Scholar
  39. Paige, D.A., S.E. Wood, and A.R. Vasavada, 1992. The thermal stability of water ice at the poles of Mercury. Science 258, 643–646.ADSCrossRefGoogle Scholar
  40. Potter, A.E. and Morgan, T.H., 1985. Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653.ADSCrossRefGoogle Scholar
  41. Potter, A.E. and Morgan, T.H., 1986. Potassium in the atmosphere of Mercury. Icarus 67, 336–340.CrossRefADSGoogle Scholar
  42. Potter, A.E., and T.H. Morgan, 1990. Evidence for magnetospheric effects on the sodium atmosphere of Mercury. Science 248, 835–838.ADSCrossRefGoogle Scholar
  43. Potter, A.E., R.M. Killen, and T.H. Morgan, 2002. The sodium tail of Mercury. Meteoritics & Planetary Science 37(9), 1165–1172.ADSCrossRefGoogle Scholar
  44. Robinson, M. S., and P. G. Lucey, 1997. Recalibrated Mariner 10 color mosaics: implications for mercurian volcanism. Science 275, 197–200.CrossRefADSGoogle Scholar
  45. Robinson, M.S., and G.J. Taylor, 2001. Ferrous oxide in Mercury’s crust and mantle. Met. Planet. Sci. 36, 841–847.ADSCrossRefGoogle Scholar
  46. Santo, A. G. et al., 2001. The MESSENGER mission to Mercury: spacecraft and mission design. Planet. Space Sci. 49, 1481–1500.CrossRefADSGoogle Scholar
  47. Sasaki, S., and E. Kurahashi, 2004. Space weathering on Mercury. Adv. Space Res. 33, 2152–2155.CrossRefADSGoogle Scholar
  48. Schlemm, C.E., et al., 2005. The X-Ray Spectrometer (XRS) on the MESSENGER Spacecraft. Space Sci. Rev. (submitted).Google Scholar
  49. Schubert, G., M.N. Ross, D.J. Stevenson, and T. Spohn, 1988. Mercury’s thermal history and the generation of its magnetic field, In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 429–460.Google Scholar
  50. Slade, M., B. Butler, and D. Muhleman, 1992. Mercury radar imaging: Evidence for polar ice. Science 258, 635–640.ADSCrossRefGoogle Scholar
  51. Solomon, S.C., 1977. The relationship between crustal tectonics and internal evolution in the moon and Mercury. Phys. Earth Planet. Int. 15, 135–145.CrossRefADSGoogle Scholar
  52. Solomon, S.C. et al., 2001. The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465.CrossRefADSGoogle Scholar
  53. Soter, S.L., and J. Ulrichs, 1967. Radiation and Heating of the Planet Mercury. Nature 214, 1315.CrossRefADSGoogle Scholar
  54. Sprague, A.L., and T.L. Roush, 1998. Comparison of Laboratory Emission spectra with Mercury Telescopic Data. Icarus 133, 174–183.CrossRefADSGoogle Scholar
  55. Sprague, A.L., R.W.H. Kozlowski, and D.M. Hunten, 1990. Caloris Basin: An enhanced source for potassium in Mercury’s atmosphere. Science 249, 1140–1143.ADSCrossRefGoogle Scholar
  56. Sprague, A.L., R.W.H. Kozlowski, F.C. Witteborn, D.P. Cruikshank, and D.H. Wooden, 1994. Mercury: Evidence for anorthosite and basalt from mid-infrared (7.5–13.5 μm) spectroscopy. Icarus 109, 156–167.CrossRefADSGoogle Scholar
  57. Sprague, A.L., D.M. Hunten, and K. Lodders, 1995. Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus 118, 211–215.CrossRefADSGoogle Scholar
  58. Sprague, A.L.,W.J. Schmitt, and R.E. Hill, 1998. Mercury: Sodium Atmospheric Enhancements, Radar Bright Spots, and Visible Surface Features. Icarus 135, 60–68.ADSGoogle Scholar
  59. Sprague, A.L., J.P. Emery, K.L. Donaldson, R.W. Russell, D.K. Lynch, and A.L. Mazuk, 2002. Mercury: Mid-infrared (3–13.5 micrometer) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Met. Planet. Sci. 37, 1255–1268.ADSCrossRefGoogle Scholar
  60. Starukhina, L.V., 2001. Water detection on atmosphereless celestial bodies: alternative explanations of the observations. J. Geophys. Res. 106(E7), 14701–14710.CrossRefADSGoogle Scholar
  61. Strom, R.G., R. Malhotra, T. Ito, F. Yoshida, and D. Kring, 2005. The origin of planetary impactors in the inner solar system. Science 309, 1847–1850.CrossRefADSGoogle Scholar
  62. Strom, R.G., and A.L. Sprague, 2003. Exploring Mercury: The Iron Planet, 216 pp. Springer-Praxis, Chichester, UK.Google Scholar
  63. Strom, R.G., and G. Neukum, 1988. The cratering record on Mercury and the origin of impacting objects. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 336–373.Google Scholar
  64. Thomas, P.G., P. Masson, and L. Fleitout, 1988. Tectonic history of Mercury. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 401–428.Google Scholar
  65. Vasavada, A.R., D.A. Paige, and S.E. Wood, 1999. Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193.CrossRefADSGoogle Scholar
  66. Vilas, F., 1985. Mercury — Absence of crystalline Fe(2+) in the regolith. Icarus 64, 133–138.CrossRefADSGoogle Scholar
  67. Vilas, F., 1988. Surface composition of Mercury from reflectance spectrophotometry. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 59–76.Google Scholar
  68. Vilas, F., M.A. Leake, and W.W. Mendell, 1984. The dependence of reflectance spectra of Mercury on surface terrain. Icarus 59, 60–68.CrossRefADSGoogle Scholar
  69. Vilas, F., P.S. Cobian, N.G. Barlow, and S.M. Lederer, 2005. How much material do the radar-bright craters at the mercurian poles contain? Planet. Space Sci. 53, 1496–1500.CrossRefADSGoogle Scholar
  70. Warell, J., 2002. Properties of the Hermean Regolith: II. Disk-Resolved Multicolor Photometry and Color Variations of the “Unknown” Hemisphere. Icarus 156, 303–317.CrossRefADSGoogle Scholar
  71. Warell, J., 2003. Properties of the Hermean regolith: III. Disk-resolved vis-NIR reflectance spectra and implications for the abundance of iron. Icarus 161, 199–222.CrossRefADSGoogle Scholar
  72. Warell, J. and D.T. Blewett, 2004. Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling. Icarus 168, 257–276.CrossRefADSGoogle Scholar
  73. Warell, J., A.L. Sprague, J.P. Emery, R.W.H. Kozlowski, and A. Long, 2006. The 0.7–5.3 micrometer IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury. Icarus, in press.Google Scholar
  74. Weidenschilling, S.J., 1978. Iron/Silicate Fractionation and the Origin of Mercury. Icarus 35, 99–111.CrossRefADSGoogle Scholar
  75. Wetherill, G.W., 1988. Accumulation of Mercury from Planetesimals. In Mercury, eds. F. Vilas, C.R. Chapman, and M.S. Matthews, Univ. of Arizona Press, Tucson, Arizona, pp. 670–691.Google Scholar

Copyright information

© Praxis Publishing Ltd 2006

Authors and Affiliations

  • Robert G. Strom
    • 1
  • Ann L. Sprague
    • 2
  1. 1.Department of Planetary SciencesUniversity of ArizonaTucsonUSA
  2. 2.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA

Personalised recommendations