The Solar System Beyond The Planets

  • Audrey Delsanti
  • David Jewitt
Part of the Springer Praxis Books book series (PRAXIS)


The Kuiper belt contains a vast number of objects in a flattened, ring-like volume beyond the orbit of Neptune. These objects are collisionally processed relics from the accretion disk of the Sun and, as such, they can reveal much about early conditions in the Solar system. At the cryogenic temperatures prevailing beyond Neptune, volatile ices have been able to survive since the formation epoch 4.5 Gyr ago. The Kuiper belt is the source of the Centaurs and the Jupiter-family comets. It is also a local analogue of the dust disks present around some nearby main-sequence stars. While most Kuiper belt objects are small, roughly a dozen known examples have diameters of order 1000 km or more, including Pluto and the recently discovered (and possibly larger) giant Kuiper belt objects 2003 UB313, 2003 EL61 (a binary and a triple system, resp.) and 2005 FY9.


Solar System Giant Planet Protoplanetary Disk Kuiper Belt Oort Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. L., Bernstein, G. M., & Malhotra, R. 2001, The Edge of the Solar System. ApJ Letters, 549, L241CrossRefADSGoogle Scholar
  2. Bauer, J. M., Meech, K. J., Fernández, Y. R., Farnham, T. L., & Roush, T. L. 2002, Observations of the Centaur 1999 UG5: Evidence of a Unique Outer Solar System Surface. PASP, 114, 1309CrossRefADSGoogle Scholar
  3. de Bergh, C., Delsanti, A., Tozzi, G. P., Dotto, E., Doressoundiram, A., & Barucci, M. A. 2005, The surface of the transneptunian object 90482 Orcus. A&A, 437, 1115CrossRefADSGoogle Scholar
  4. Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., & Malhotra, R. 2004, The Size Distribution of Trans-Neptunian Bodies. AJ, 128, 1364CrossRefADSGoogle Scholar
  5. Brown, R. H., Cruikshank, D. P., & Pendleton, Y. 1999, Water Ice on Kuiper Belt Object 1996 TO66. ApJ Letters, 519, L101CrossRefADSGoogle Scholar
  6. Brown, M. E., Trujillo, C., & Rabinowitz, D. 2004, Discovery of a Candidate Inner Oort Cloud Planetoid. ApJ, 617, 645CrossRefADSGoogle Scholar
  7. Brown, M.E., Trujillo, C.A., Rabinowitz, D.L. 2005, Discovery of a planetary-sized object in the scattered Kuiper belt, submitted to ApJ Letters Google Scholar
  8. Brown, M.E, van Dam, M.A, Bouchez, A.H., Le Mignant D., Campbell, R.D., Chin, A., Conrad, A. et al. 2005, Satellites of the largest Kuiper belt objects, submitted to ApJ Letters Google Scholar
  9. Brown, M.E, Bouchez, A.H., Rabinowitz, D., Sari, R., Trujillo, C.A., van Dam, M.A, Campbell, R.D. et al 2005, Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL61. ApJ Letters, 632, L45CrossRefADSGoogle Scholar
  10. Brown, M. E., & Koresko, C. C. 1998, Detection of Water Ice on the Centaur 1997 CU 26. ApJ Letters, 505, L65CrossRefADSGoogle Scholar
  11. Canup, R. M. 2005, A Giant Impact Origin of Pluto-Charon. Science, 307, 546CrossRefADSGoogle Scholar
  12. Clark, R. N., et al. 2005, Compositional maps of Saturn’s moon Phoebe from imaging spectroscopy. Nature, 435, 66CrossRefADSGoogle Scholar
  13. Cochran, A. L., Levison, H. F., Stern, S. A., & Duncan, M. J. 1995, The Discovery of Halley-sized Kuiper Belt Objects Using the Hubble Space Telescope. ApJ, 455, 342CrossRefADSGoogle Scholar
  14. Cruikshank, D. P., et al. 1998, The Composition of Centaur 5145 Pholus. Icarus, 135, 389CrossRefADSGoogle Scholar
  15. Delsanti, A., Hainaut, O., Jourdeuil, E., Meech, K. J., Boehnhardt, H., & Barrera, L. 2004, Simultaneous visible-near IR photometric study of Kuiper Belt Object surfaces with the ESO/Very Large Telescopes. A&A, 417, 1145CrossRefADSGoogle Scholar
  16. Doressoundiram, A., Peixinho, N., Doucet, C., Mousis, O., Barucci, M. A., Petit, J. M., & Veillet, C. 2005, The Meudon Multicolor Survey (2MS) of Centaurs and trans-neptunian objects: extended dataset and status on the correlations reported. Icarus, 174, 90CrossRefADSGoogle Scholar
  17. Doressoundiram, A., Barucci, M.A., Tozzi, G.P., Poulet, F., Boehnhardt, H., de Bergh, C. and Peixinho, N. 2006, Spectral characteristics and modeling of the trans-neptunian object (55565) 2002 AW197 and the Centaurs (55576) 2002 GB10 and (83982) 2002 GO9. PSS in pressGoogle Scholar
  18. Elliot, J. L., Dunham, E.W., Bosh, A. S., Slivan, S. M., Young, L. A., Wasserman, L. H., & Millis, R. L. 1989, Pluto’s atmosphere. Icarus, 77, 148CrossRefADSGoogle Scholar
  19. Elliot, J. L., Ates, A., Babcock, B. A., Bosh, A. S., Buie, M. W., Clancy, K. B., Dunham, E. W., et al. 2003, The recent expansion of Pluto’s atmospher, Nature, 424, 165CrossRefADSGoogle Scholar
  20. Elliot, J. L., et al. 2005, The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population. AJ, 129, 1117CrossRefADSGoogle Scholar
  21. Emel’yanenko, V. V., Asher, D. J., & Bailey, M. E. 2003, A new class of trans-Neptunian objects in high-eccentricity orbits. MNRAS, 338, 443CrossRefADSGoogle Scholar
  22. Esposito, L.W., et al. 2005, Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System. Science, 307, 1251CrossRefADSGoogle Scholar
  23. Foster, M. J., Green, S. F., McBride, N., & Davies, J. K. 1999, NOTE: Detection of Water Ice on 2060 Chiron. Icarus, 141, 408CrossRefADSGoogle Scholar
  24. Gladman, B., Holman, M., Grav, T., Kavelaars, J., Nicholson, P., Aksnes, K., & Petit, J.-M. 2002, Evidence for an Extended Scattered Disk. Icarus, 157, 269CrossRefADSGoogle Scholar
  25. Goldreich, P., Lithwick, Y., & Sari, R. 2002, Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature, 420, 643CrossRefADSGoogle Scholar
  26. Gomes, R. 2003, Planetary science: Conveyed to the Kuiper belt. Nature, 426, 393CrossRefADSGoogle Scholar
  27. Gomes, R. S. 2003, The origin of the Kuiper Belt high-inclination population. Icarus, 161, 404CrossRefADSGoogle Scholar
  28. Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466CrossRefADSGoogle Scholar
  29. Gradie, J. & Tedesco, E. 1982, Compositional structure of the asteroid belt. Science, 216, 1405.ADSCrossRefGoogle Scholar
  30. Grundy, W. M., & Fink, U. 1996, Synoptic CCD Spectrophotometry of Pluto Over the Past 15 Years. Icarus, 124, 329CrossRefADSGoogle Scholar
  31. Grundy, W. M., Noll, K. S., & Stephens, D. C. 2005, Diverse albedos of small trans-neptunian objects. Icarus, 176, 184CrossRefADSGoogle Scholar
  32. Hainaut, O. R., & Delsanti, A. C. 2002, Colors of Minor Bodies in the Outer Solar System. A statistical analysis. A&A, 389, 641CrossRefADSGoogle Scholar
  33. Holman, M. J., &Wisdom, J. 1993, Dynamical stability in the outer solar system and the delivery of short period comets. AJ, 105, 1987CrossRefADSGoogle Scholar
  34. Ida, S., Larwood, J., & Burkert, A. 2000, Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects. ApJ, 528, 351CrossRefADSGoogle Scholar
  35. Jewitt, D., & Luu, J. 1993, Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730CrossRefADSGoogle Scholar
  36. Jewitt, D., Luu, J., & Trujillo, C. 1998, Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey. AJ, 115, 2125CrossRefADSGoogle Scholar
  37. Jewitt, D. C. 2002, From Kuiper Belt Object to Cometary Nucleus: The Missing Ultrared Matter. AJ, 123, 1039CrossRefADSGoogle Scholar
  38. Jewitt, D. C., & Luu, J. X. 2001, Colors and Spectra of Kuiper Belt Objects. AJ, 122, 2099CrossRefADSGoogle Scholar
  39. Jewitt, D. C., and Luu, J. 2004, Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature, 432, 731CrossRefADSGoogle Scholar
  40. Jewitt, D., & Sheppard, S. 2005, Irregular Satellites in the Context of Planet Formation. Space Science Reviews, 116, 441CrossRefADSGoogle Scholar
  41. Johnson, T. V., & Lunine, J. I. 2005, aturn’s moon Phoebe as a captured body from the outer Solar System. Nature, 435, 69CrossRefADSGoogle Scholar
  42. Kenyon, S. J., & Luu, J. X. 1999, ApJ, Accretion in the Early Outer Solar System. 526, 465Google Scholar
  43. Levison, H. F. & Morbidelli, A. 2003, The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature, 426, 419.CrossRefADSGoogle Scholar
  44. Levison, H. F., & Stern, S. A. 2001, On the Size Dependence of the Inclination Distribution of the Main Kuiper Belt. AJ, 121, 1730CrossRefADSGoogle Scholar
  45. Licandro, J. Pinilla-Alonso, N., Pedani, M., Oliva. E., Tozzi, G.P. and Grundy, W. 2006, The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-neptunian belt?, A&A Letters, in PressGoogle Scholar
  46. Luu, J. X., Jewitt, D. C., & Trujillo, C. 2000, Water Ice in 2060 Chiron and Its Implications for Centaurs and Kuiper Belt Objects. ApJ Letters, 531, L151CrossRefADSGoogle Scholar
  47. Malhotra, R. 1995, The Origin of Pluto’s Orbit: Implications for the Solar System Beyond Neptune. AJ, 110, 420CrossRefADSGoogle Scholar
  48. McCord, T. B., & Chapman, C. R. 1975, Asteroids — Spectral reflectance and color characteristics. ApJ, 195, 553CrossRefADSGoogle Scholar
  49. Morbidelli, A., & Levison, H. F. 2004, Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12 (Sedna) AJ, 128, 2564CrossRefADSGoogle Scholar
  50. Morbidelli, A., Emel’yanenko, V. V., & Levison, H. F. 2004, Origin and orbital distribution of the trans-Neptunian scattered disc. MNRAS, 355, 935CrossRefADSGoogle Scholar
  51. Moroz, L., Baratta, G., Strazzulla, G., Starukhina, L., Dotto, E., Barucci, M. A., Arnold, G., & Distefano, E. 2004, Optical alteration of complex organics induced by ion irradiation: 1. Laboratory experiments suggest unusual space weathering trend. Icarus, 170, 214CrossRefADSGoogle Scholar
  52. Peixinho, N., Doressoundiram, A., Delsanti, A., Boehnhardt, H., Barucci, M. A., & Belskaya, I. 2003, Reopening the TNOs color controversy: Centaurs bimodality and TNOs unimodality. A&A, 410, L29CrossRefADSGoogle Scholar
  53. Peixinho, N., Boehnhardt, H., Belskaya, I., Doressoundiram, A., Barucci, M. A., & Delsanti, A. 2004, ESO large program on Centaurs and TNOs: visible colors-final results. Icarus, 170, 153CrossRefADSGoogle Scholar
  54. Porco, C. C., et al. 2005, Cassini Imaging Science: Initial Results on Phoebe and Iapetus. Science, 307, 1237CrossRefADSGoogle Scholar
  55. Rabinowitz, D.L, Barkume, K., Brown, M.E., Roe, H., Schwartz, M., Tourtellotte, S., Trujillo, C. 2005, Photometric observations constraining the size, shape and albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper Belt, submitted to ApJ Google Scholar
  56. Sheppard, S. S., & Jewitt, D. 2004, Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries. AJ, 127, 3023CrossRefADSGoogle Scholar
  57. Shul’Man, L. M. 1972, The Chemical Composition of Cometary Nuclei, IAU Symp. 45: The Motion, Evolution of Orbits, and Origin of Comets, 45, 265ADSGoogle Scholar
  58. Sicardy, B., et al. 2003, Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature, 424, 168CrossRefADSGoogle Scholar
  59. Strazzulla, G., & Johnson, R. E. 1991, ASSL Vol. 167: IAU Colloq. 116: Comets in the post-Halley era, 243Google Scholar
  60. Tegler, S. C., & Romanishin, W. 1998, Two distinct populations of Kuiper-belt objects. Nature, 392, 49CrossRefADSGoogle Scholar
  61. Tegler, S. C., & Romanishin, W. 2003, Resolution of the kuiper belt object color controversy: two distinct color populations. Icarus, 161, 181CrossRefADSGoogle Scholar
  62. Thébault, P., & Doressoundiram, A. 2003, Colors and collision rates within the Kuiper belt: problems with the collisional resurfacing scenario. Icarus, 162, 27CrossRefADSGoogle Scholar
  63. Thompson, W. R., Murray, B.G. J. P. T., Khare, B. N., & Sagan, C. 1987, Coloration and darkening of methane clathrate and other ices by charged particle irradiation — Applications to the outer solar system. JGR, 92, 14933ADSCrossRefGoogle Scholar
  64. Tiscareno, M. S., & Malhotra, R. 2003, The Dynamics of Known Centaurs. AJ, 126, 3122CrossRefADSGoogle Scholar
  65. Tombaugh, C. W. 1961, The Trans-Neptunian Planet Search. Planets and Satellites, edited by Gerard P. Kuiper and Barbara M. Middlehurst Chicago: University of Chicago Press, 1961, p.12Google Scholar
  66. Trujillo, C. A., Jewitt, D. C., & Luu, J. X. 2000, Population of the Scattered Kuiper Belt. ApJ Letters, 529, L103CrossRefADSGoogle Scholar
  67. Trujillo, C. A., Jewitt, D. C., & Luu, J. X. 2001, Properties of the Trans-Neptunian Belt. AJ, 122, 457CrossRefADSGoogle Scholar
  68. Trujillo, C. A., & Brown, M. E. 2002, A Correlation between Inclination and Color in the Classical Kuiper Belt ApJ Letters, 566, L125CrossRefADSGoogle Scholar
  69. Trujillo, C. A., & Brown, M. E. 2003, The Caltech Wide Area Sky Survey, Earth Moon and Planets, 92, 99CrossRefADSGoogle Scholar
  70. Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459CrossRefADSGoogle Scholar
  71. Veillet, C., et al. 2002, The binary Kuiper-belt object 1998 WW31. Nature, 416, 711CrossRefADSGoogle Scholar
  72. Weaver, H. A., et al. 2005, S/2005 P 1 and S/2005 P 2. IAU circular, 8625, 1ADSGoogle Scholar
  73. Weidenschilling, S. J. 2002, On the Origin of Binary Transneptunian Objects. Icarus, 160, 212CrossRefADSGoogle Scholar
  74. Youdin, A. N., & Chiang, E. I. 2004, ApJ, Particle Pileups and Planetesimal Formation. 601, 1109Google Scholar
  75. Zellner, B., Andersson, L., & Gradie, J. 1977, UBV photometry of small and distant asteroids. Icarus, 31, 447CrossRefADSGoogle Scholar
  76. Zellner, B., Tholen, D. J., & Tedesco, E. F. 1985, The eight-color asteroid survey — Results for 589 minor planets. Icarus, 61, 355CrossRefADSGoogle Scholar

Copyright information

© Praxis Publishing Ltd 2006

Authors and Affiliations

  • Audrey Delsanti
    • 1
  • David Jewitt
    • 1
  1. 1.Institute for AstronomyUniversity of HawaiiHonoluluUSA

Personalised recommendations