Advertisement

Single light scattering: computational methods

  • Victor G. Farafonov
  • Vladimir B. Il’in
Part of the Springer Praxis Books book series (PRAXIS)

Keywords

Axisymmetric Problem Prolate Spheroid Spheroidal Particle Electromagnetic Scattering Nonspherical Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, A. A., et al. (1989): Evaluation of Lamé angular wave functions by solving of auxiliary differential equations, Comp. Math. Math. Phys., 29, 119–131.Google Scholar
  2. Abramov, A. A., et al. (1991): Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase functions method, Comp. Math. Math. Phys., 31, 25–42.Google Scholar
  3. Abramov, A. A., et al. (1995): A numerical-analytic investigation of the diffraction of a plane acoustic wave by ideal prolate spheroids and triaxial ellipsoids, Comp. Math. Math. Phys., 35, 1103–1123.Google Scholar
  4. Al-Rizzo, H. M., and J. M. Tranquilla (1995): Electromagnetic scattering from dielectrically coated axisymmetric objects using the generalized point-matching technique II. Numerical results and comparison, J. Comp. Phys., 119, 356–373.Google Scholar
  5. Apel’tsyn, V. F., and A. G. Kyurkchan (1990): Analytical Properties of Wave Fields, Moscow University Press, Moscow [in Russian].Google Scholar
  6. Asano, S., and G. Yamamoto (1975): Light scattering by spheroidal particle, Appl. Opt., 14, 29–49.Google Scholar
  7. Babenko, V. A. (2004): Bibliography on Light Scattering, Stepanov Institute of Physics Minsk (the database is available at http://www.astro.spbu.ru/DOP/4-BIBL).Google Scholar
  8. Babenko, V. A., L. G. Astafyeva, and V. N. Kuzmin (2003): Electromagnetic Scattering by Disperse Media, Springer-Praxis, London.Google Scholar
  9. Barber, P. W., and S. C. Hill (1990): Light Scattering by Particles: Computational Methods, World Scientific, Singapore.Google Scholar
  10. Barber, P. W., and C. Yeh (1975): Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, Appl. Opt., 14, 2864–2872.Google Scholar
  11. Barrowes, B. E. et al. (2004): On the asymptotic expansion of the spheroidal wave functions and its eigenvalues for complex size parameter, Studies Appl. Math., 113, 271–301.Google Scholar
  12. Barton, J. P. (1999): Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam, J. Opt. Soc. Am. A, 16, 160–166.Google Scholar
  13. Barton, J. P. (2000): Electromagnetic fields for a spheroidal particle with an arbitrary embedded sources, J. Opt. Soc. Am. A, 17, 458–464.Google Scholar
  14. Barton, J. P. (2001): Internal, near-surface and scattered electromagnetic fields for a layered spheroid with arbitrary illumination, Appl. Opt., 40, 3598–3607.Google Scholar
  15. Barton, J. P. (2002): Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination, J. Opt. Soc. Am. A, 19, 2429–2435.Google Scholar
  16. Bateman, H., and A. Erdelyi (1955): Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York.Google Scholar
  17. Bates, R. H. T., et al. (1973):An overview of point matching, Radio Electr. Eng., 43, 193–200.Google Scholar
  18. Bohren, C. F., and D. R. Huffman (1983): Absorption and Scattering of Light by Small Particles, John Wiley, New York.Google Scholar
  19. Borghese, F., P. Denti, and R. Saija (2003): Scattering from Model Nonspherical Particles, Springer, Berlin.Google Scholar
  20. Boyd, J. P. (2003): Large mode number eigenvalues of the prolate spheroidal differential equation, Appl. Math. Comp., 145, 881–886.Google Scholar
  21. Brown, D. J., and R. M. Stringfield (2000): Iterative methods applied to matrix equations found in calculating spheroidal functions, J. Comp. Phys., 159, 329–343.Google Scholar
  22. Ciric, I. R., and F. R. Cooray (2000): Separation of variables for electromagnetic scattering by spheroidal particles, Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis (eds), Academic Press, San Diego, pp. 89–130.Google Scholar
  23. Colton, D., and R. Kress (1984): Integral Methods in Scattering Theory, John Wiley, New York.Google Scholar
  24. Dallas, A. G. (2000): On the convergence and numerical stability of the second Waterman scheme for approximation of the acoustic field scattered by a hard object, Technical Report, University Delaware, pp. 1–35.Google Scholar
  25. Davies, J. B. (1973): A least-squares boundary residual method for the numerical solution of scattering problems, IEEE Trans. Microw. Theory Techn., MTT-21, 99–104.Google Scholar
  26. Debye, P. (1909): Der Licht Druck auf Kugeln von beliebigem Material, Ann. Phys., 30, 57–136.Google Scholar
  27. de Moraes, P. C. G., and L. G. Guimaraes (2002): Uniform asymptotic formulae for the spheroidal angular functions, J. Quant. Spectr. Rad. Transf., 74, 757–765.Google Scholar
  28. de Moraes, P. C. G., and L. G. Guimaraes (2003): Uniform asymptotic formulae for the spheroidal radial functions, J. Quant. Spectr. Rad. Transf., 79–80, 973–982.Google Scholar
  29. Doicu, A., and T. Wriedt (1999): Calculation of the T matrix in the null-field method with discrete sources, J. Opt. Soc. Am. A, 16, 2539–2544.Google Scholar
  30. Doicu, A., and T. Wriedt (2001): T-matrix method for electromagnetic scattering from scatterers with complex structure, J. Quant. Spectr. Rad. Transf., 70, 663–673.Google Scholar
  31. Doicu, A., Y. Eremin, and T. Wriedt (2000): Acoustic and Electromagnetic Scattering Analysis, Academic Press, San Diego, CA.Google Scholar
  32. Eide, H. A. et al. (1999): New method for computing expansion coefficients for spheroidal functions, J. Quant. Spectr. Rad. Transf., 63, 191–203.Google Scholar
  33. Eremina, E., and T. Wriedt (2003): Review of light scattering by fiber particles with high aspect ratio, Rec. Res. Dev. Opt., 3, 297–318.Google Scholar
  34. Eremina, E., Y. Eremin, and T. Wriedt (2005): Analysis of light scattering by erythrocyte based on discrete source method, Opt. Comm., 24, 15–23.Google Scholar
  35. Farafonov, V. G. (1983): Diffraction of a plane electromagnetic wave by a dielectric spheroid, (Sov.) Diff. Equat., 19, 1765–1777.Google Scholar
  36. Farafonov, V. G. (1991): Diffraction of a plane electromagnetic wave by strongly elongated perfectly conducting spheroids, (Sov.) Radiotech. Electron., 36, 1443–1451.Google Scholar
  37. Farafonov, V. G. (2001a): New recursive solution of the problem of scattering of electromagnetic radiation by multilayered spheroidal particles, Opt. Spectr., 90, 743–752.Google Scholar
  38. Farafonov, V. G. (2001b): Light scattering by axisymmetric multilayered particles, Opt. Spectr., 91, 92–102.Google Scholar
  39. Farafonov, V. G. (2002): Applicability of the T-matrix method and its modifications, Opt. Spectr., 92, 748–760.Google Scholar
  40. Farafonov, V. G., and V. B. Il’in (2001): Light scattering by dielectric particles with axial symmetry II, Opt. Spectr., 91, 960–966.Google Scholar
  41. Farafonov, V. G., and V. B. Il’in (2005a): Light scattering by non-spherical particles: some theoretical aspects. Proc. SPIE 5829, 109–116.Google Scholar
  42. Farafonov, V. G., and V. B. Il’in (2005b): Modification and investigation of the pointmatching method, Opt. Spectr. 100, 480–490.Google Scholar
  43. Farafonov, V. G., and S. Y. Slavyanov (1980): Diffraction of a plane wave by a perfectly conducting spheroid, (Sov.) Radiotech. Electron., 25, 2056–2065.Google Scholar
  44. Farafonov, V. G., V. B. Il’in, and M. S. Prokopjeva (2003): Light scattering by multilayered nonspherical particles: a set of methods, J. Quant. Spectr. Rad. Transf., 79–80, 599–626.Google Scholar
  45. Farafonov, V. G., M. S. Prokopjeva, and V. B. Il’in (2004): Analytical averaging of cross-sections for randomly oriented layered particles in the modified T-matrix method, J. Quant. Spectr. Rad. Transf., 89, 111–122.Google Scholar
  46. Farafonov, V. G., V. B. Il’in, and N. V. Voshchinnikov (2005): Separation of variables method for dielectric ellipsoids, Abstract Book, 8th Conf. Electrom. Light Scatt. Nonsph. Part., pp. 84–87.Google Scholar
  47. Flammer, C. (1957): Sheroidal Wave Functions, Stanford University Press, Stanford, CA.Google Scholar
  48. Gurwich, I., N. Shiloah, and M. Kleiman (1999): The recursive algorithm for electromagnetic scattering by titled infinite circular multi-layered cylinder, J. Quant. Spectr. Rad. Transf., 63, 217–229.Google Scholar
  49. Gurwich, I., et al. (2000): Scattering of electromagnetic radiation by multilayered spheroidal particles: recursive procedure, Appl. Opt., 39, 470–477.Google Scholar
  50. Gurwich, I., N. Shiloah, and M. Kleiman (2001): Calculations of the Mie scattering coefficients for multilayered particles with large size parameters, J. Quant. Spectr. Rad. Transf., 70, 433–440.Google Scholar
  51. Gurwich, I., et al. (2003): Scattering by an arbitrary multi-layered spheroid: theory and numerical results, J. Quant. Spectr. Rad. Transf., 79–80, 649–660.Google Scholar
  52. Hafner Ch., and K. Bomholt (1993): The 3D Electrodynamic Wave Simulator, John Wiley, Chichester.Google Scholar
  53. Han, Y., and Z. Wu (2001): Scattering of a spheroidal particle illuminated by a Gaussian beam, Appl. Opt., 40, 2501–2509.Google Scholar
  54. Han, Y., G. Grahan, and G. Gousbet (2003): Generalized Lorenz-Mie theory for spheroidal particle with off-axis Gaussian-beam illumination, Appl. Opt., 42, 6621–6629.Google Scholar
  55. Ikuno, H., and K. Yasuura (1973): Improved point-matching method with application to scattering from a periodic surface, IEEE Trans. Anten. Propag., 21, 657–662.Google Scholar
  56. Il’in, V. B., A. A. Loskutov, and V. G. Farafonov (2004): Modification and investigation of the T-matrix method as applied to scattering of a plane wave from a perfectly conducting axisymmetric body, Comp. Math. Math. Phys., 44, 329–348.Google Scholar
  57. Iskander, M. F., A. Lakhtakia, and C. H. Durney (1983): A new procedure for improving the solution stability and extending the frequency range of the EBCM, IEEE Trans. Anten. Propag., 31, 317–324.Google Scholar
  58. Jackson, J. D. (1975): Classical Electrodynamics, John Wiley, New York.Google Scholar
  59. Jones, A. R. (1999): Light scattering for particle characterisation, Prog. Energy Combust. Sci., 25, 1–53.Google Scholar
  60. Kahnert, F. M. (2003a): Surface-integral formulation for electromagnetic scattering in spheroidal coordinates, J. Quant. Spectr. Rad. Transf., 77, 61–78.Google Scholar
  61. Kahnert, F. M. (2003b): Numerical methods in electromagnetic scattering theory, J. Quant. Spectr. Rad. Transf., 79–80, 775–824.Google Scholar
  62. Kahnert, F. M. (2004): Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles, J. Quant. Spectr. Rad. Transf., 85, 231–249.Google Scholar
  63. Kahnert, F. M., J. J. Stamnes, and K. Stamnes (2001a): Application of the extended boundary condition method to particles with sharp edges: a comparison of two different surface integration approaches, Appl. Opt., 40, 3101–3109.Google Scholar
  64. Kahnert, F. M., J. J. Stamnes, and K. Stamnes (2001b): Application of the extended boundary conditions method to homogeneous particles with point group symmetries, Appl. Opt., 40, 3110–3123.Google Scholar
  65. Kahnert, F. M., J. J. Stamnes, and K. Stamnes (2002a): Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes? J. Opt. Soc. Am. A, 19, 521–531.Google Scholar
  66. Kahnert, F. M., J. J. Stamnes, and K. Stamnes (2002b): Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: possibilities and limitations, J. Quant. Spectr. Rad. Transf., 74, 167–182.Google Scholar
  67. Kantorovich, L. V., and V. I. Krylov (1964): Approximate Methods of Higher Analysis, John Wiley, New York.Google Scholar
  68. Kerker, M. (1969): The Scattering of Light and Other Electromagnetic Radiation, Academic Press, San Diego, CA.Google Scholar
  69. Khlebtsov, N. G. (1980): Light scattering by nonspherical particles and its applications, Cand. thesis, Saratov State University, Saratov, Russia.Google Scholar
  70. Khlebtsov, N. G. (1996): Extinction and scattering of light in disperse systems: theory and experiments, Doct. Habil. thesis, Saratov State University (English translation of the review is available at http://www.astro.spbu.ru/DOP/3-REVS).Google Scholar
  71. Kokkorakis, G. C., and J. A. Roumeliotis (2002): Power series expansions for spheroidal wave functions with small arguments, J. Comp. Appl. Math., 139, 95–127.Google Scholar
  72. Komarov, V. I., L. I. Ponamarev, and S. Y. Slavyanov (1976): Spheroidal and Coulomb Spheroidal Functions, Nauka, Moscow [in Russian].Google Scholar
  73. Kyurkchan, A. G. (1994): On a method of solving the problem of wave diffraction by a scatterer of finite sizes, Sov. Phys. Dokl., 33, 728–731.Google Scholar
  74. Kyurkchan, A. G. (2000): Solution of vector scattering problem by the method of diagram equations, (Sov.) Radiotechn. Electron., 45, 1078–1083.Google Scholar
  75. Li, L.-W., et al. (1998): Computations of spheroidal harmonics with complex arguments: a review with an algorithm, Phys. Rev. E, 58, 6792–6806.Google Scholar
  76. Li, L.-W., X.-K. Kang, and M. S. Leong (2002): Spheroidal Wave Functions in Electromagnetic Theory, John Wiley, New York.Google Scholar
  77. Lorenz, L. (1890): Über die Refractionconstante, Ann. Phys. Chem., 11, 70–103.Google Scholar
  78. Mackowski, D. W. (2002): Discrete dipole moment method for calculation of the T matrix for nonspherical particles, J. Opt. Soc. Am. A, 19, 881–893.Google Scholar
  79. Maystre, D., and M. Cadilhac (1985): Singularities of the continuation of fields and validity of Rayleigh’s hypothesis, J. Math. Phys., 26, 2201–2204.Google Scholar
  80. Mie, G. (1908): Beiträge zur Optik Trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 25, 377–445.Google Scholar
  81. Millar, R. F. (1973): The Rayleigh hypothesis and a related least-squares solution to scattering problem for periodic surfaces and other scatterers, Radio Sci., 8, 785–796.Google Scholar
  82. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis (2000a): Concepts, terms, notations, in Light Scattering by Nonspherical Particles, M.I. Mishchenko, J.W. Hovenier, L.D. Travis (eds), Academic Press, San Diego, CA, pp. 3–27.Google Scholar
  83. Mishchenko, M. I., L. D. Travis, and A. Macke (2000b): T-matrix method and its applications, in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis (eds), Academic Press, San Diego, CA, pp. 147–172.Google Scholar
  84. Mishchenko, M. I., et al. (2000c): Overview of scattering by nonspherical particles, in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (eds), Academic Press, San Diego, CA, pp. 29–60.Google Scholar
  85. Mishchenko, M. I., L. D. Travis, and A. Lacis (2002): Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge, UK.Google Scholar
  86. Mishchenko, M. I., et al. (2004): T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database, J. Quant. Spectr. Rad. Transf., 88, 357–406.Google Scholar
  87. Möglich, F. (1927): Beugungserscheinungen an Korpen von ellipsoidischer Gestalt, Ann. Phys., 83, 609–735.Google Scholar
  88. Moreno, E., et al. (2002): Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures, J. Opt. Soc. Am. A, 19, 101–111.Google Scholar
  89. Moroz, A. (2005): Improvement of Mishchenko’s T-matrix code for absorbing particles, Appl. Opt., 44, 3604–3609.Google Scholar
  90. Morrison, J. A., M.-J. Cross, and T. S. Chu (1973): Rain-induced differential attenuation and differential phase shift at microwave frequencies, Bell Syst. Tech. J., 52, 599–604.Google Scholar
  91. Morse, P. M., and H. Feshbach (1953): Methods of Theoretical Physics, McGraw-Hill, New York.Google Scholar
  92. Mullin, C. R., R. Sandburg, and C. O. Velline (1965): A numerical technique for the determination of scattering cross sections of infinite cylinders of arbitrary geometrical cross section, IEEE Trans. Anten. Propag., 13, 141–149.Google Scholar
  93. Nieminen, T. A., H. Rubinsztein-Dunlop, and N. R. Heckenberg (2003): Calculation of the T-matrix: general consideration and application of the point-matching method, J. Quant. Spectr. Rad. Transf., 79–80, 1019–1030.Google Scholar
  94. Oguchi, T. (1973): Attenuation and phase rotation of radio waves due to rain: calculation at 19.3 and 34.8 GHz, Radio Sci., 8, 31–38.Google Scholar
  95. Peterson, B., and S. Ström (1974): T-matrix formulation of electromagnetic scattering multilayered scatterers, Phys. Rev. D, 10, 2670–2684.Google Scholar
  96. Petrov, P. K., and V. A. Babenko (1999): The variational boundary condition method for solving problems of light scattering by nonspherical particles, J. Quant. Spectr. Rad. Transf., 63, 237–250.Google Scholar
  97. Piller, N. B., and O. J. F. Martin (1998): Extension of the generalized multipole technique to three-dimensional anisotropic scatterers, Opt. Lett., 23, 579–581.Google Scholar
  98. Posselt, B., et al. (2002): Light scattering by multilayered ellipsoidal particles in the quasistatic approximation, Measur. Sci. Technol., 13, 256–262.Google Scholar
  99. Qingan, W., C. Kang, and O. Y. Z. Xiang (1999): Discussion of key algorithms for computing scattering cross sections using separate of variables method for spheroids, J. Quant. Spectr. Rad. Transf., 63, 251–261.Google Scholar
  100. Ramm, A. G. (1982): Convergence of the T-matrix approach to scattering theory, J. Math. Phys., 23, 1123–1125.Google Scholar
  101. Rayleigh, D. W. (1881): On the electromagnetic theory of light, Phil. Mag., 12, 81–101.Google Scholar
  102. Rother, T. (1998): Generalization of the separation of variables method for nonspherical scattering of dielectric objects, J. Quant. Spectr. Rad. Transf., 60, 335–353.Google Scholar
  103. Rother, T., K. Schmidt, and S. Havemann (2001): Light scattering on hexagonal ice columns, J. Opt. Soc. Am. A, 18, 2512–2517.Google Scholar
  104. Schmidt, K., T. Rother, and J. Wauer (1998): The equivalence of applying the extended boundary condition the continuity conditions for solving electromagnetic scattering problems, Opt. Commun., 150, 1–4.Google Scholar
  105. Schmidt, K., J. Wauer, and T. Rother (2003): Application of the separation of variables method to a plane wave scattering on nonaxisymmetric particles, Proc. SPIE, 5059, 76–86.Google Scholar
  106. Schulz, F. M., K. Stamnes, and J. J. Stamnes (1998): Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T-matrix computed in spheroidal coordinates, Appl. Opt., 37, 7875–7896.Google Scholar
  107. Sinha, B. P., and R. H. McPhie (1977): Electromagnetic scattering by prolate spheroids for a plane waves with arbitrary polarization and angle of incidence, Radio Sci., 12, 171–184.Google Scholar
  108. Stratton, J. A. (1941): Electromagnetic Theory, McGraw-Hill, New York.Google Scholar
  109. Tsinopoulos, S. V., S. E. Kattis, and D. Polyzos (1998): Three-dimensional boundary element analysis of electromagnetic wave scattering by penetrable bodies, Comp. Mech., 21, 306–315.Google Scholar
  110. van de Hulst, H. C. (1957): Light Scattering by Small Particles, Dover, New York.Google Scholar
  111. Varadan, V. K., and V. V. Varadan (eds) (1980): Acoustic, Electromagnetic and Elastic Wave Scattering — Focus on the T-Matrix Approach, Pergamon Press, New York.Google Scholar
  112. Voshchinnikov, N. V., and V. G. Farafonov (1993): Optical properties of spheroidal particles, Astrophys. Sp. Sci., 204, 19–86.Google Scholar
  113. Voshchinnikov, N. V., and V. G. Farafonov (2002): Light scattering by an elongated particle: spheroid versus infinite cylinder, Measur. Sci. Technol., 13, 249–255.Google Scholar
  114. Voshchinnikov, N. V., and V. G. Farafonov (2003): Calculation of prolate radial spheroidal functions using Jaffé expansion, Comp. Math. Math. Phys., 43, 1299–1309.Google Scholar
  115. Wait, J. R. (1955): Electromagnetic scattering from a radially inhomogeneous sphere, Can. J. Phys., 33, 189–195.Google Scholar
  116. Waterman, P. C. (1965): Matrix formulation of electromagnetic scattering, Proc. IEEE, 53, 805–812.Google Scholar
  117. Waterman, P. C. (1969): Scattering by dielectric obstacles, Alta. Freq., 38, 348–352.Google Scholar
  118. Wolf, S., and N. V. Voshchinnikov (2004): Mie scattering by ensembles of particles with very large size parameters, Comp. Phys. Commun., 162, 113–123.Google Scholar
  119. Wriedt, T. (1998): Review of elastic scattering theories, Part. Part. Syst. Charact., 15, 67–74.Google Scholar
  120. Wriedt, T. (2005): Internet site: http://www.T-matrix.deGoogle Scholar
  121. Wriedt, T., and A. Doicu (1997): Comparison between various formulations of the extended boundary condition method, Opt. Commun., 142, 91–98.Google Scholar
  122. Wried, T., and U. Comberg (1998): Comparison of computational scattering methods, J. Quant. Spectr. Rad. Transf., 60, 411–423.Google Scholar
  123. Yang, W. (2003): Improved recursive algorithm for light scattering by a multilayered sphere, Appl. Opt., 42, 1710–1720.Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2006

Authors and Affiliations

  • Victor G. Farafonov
    • 1
  • Vladimir B. Il’in
    • 2
  1. 1.InstrumentationSt. Petersburg University of AerocosmicSt. PetersburgRussia
  2. 2.Astronomical InstituteSt. Petersburg UniversitySt. PetersburgRussia

Personalised recommendations