Skip to main content

Latest trends in the ever-surprising field of mass measurements

  • Conference paper
  • First Online:
  • 63 Accesses

Abstract

The binding energy of the nucleus, from its mass, continues to be of importance —not only for various aspects of nuclear physics itself, but for other branches of physics such as weak-interaction studies and stellar nucleosynthesis. The number of dedicated programs is increasing worldwide with recent results reflecting experimental achievements worthy of admiration. A brief description is offered of the modern experimental techniques dedicated to the particularly challenging task of measuring the mass of exotic nuclides and detailed comparisons are made in order to present future projects in a critical perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Ilic et al., J. Appl. Phys. 95, 3694 (2004).

    Article  ADS  Google Scholar 

  2. P. Schewe, J. Riordon, B. Stein, Phys. News Update 673, 2 (2004) (http://www.aip.org/pnu/2004/split/673-2.html).

    Google Scholar 

  3. B. Ilic et al., Appl. Phys. Lett. 85, 2604 (2004).

    Article  ADS  Google Scholar 

  4. J.C. Hardy, these proceedings.

    Google Scholar 

  5. S. Goriely, these proceedings.

    Google Scholar 

  6. S. Rainville, J.K. Porto, D.E. Prichard, Science 303, 334 (2004).

    Article  ADS  Google Scholar 

  7. R. Davis, Metrologia 40, 299 (2004); M. Glaeser, Metrologia 40, 376 (2004).

    Article  ADS  Google Scholar 

  8. J.K. Webb et al., Phys. Rev. Lett. 87, 091301 (2001).

    Article  ADS  Google Scholar 

  9. M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004).

    Article  ADS  Google Scholar 

  10. K.A. Olive, Y.-Z. Qian, Phys. Today, October issue, p. 40 (2004).

    Google Scholar 

  11. J. Verdu et al., Phys. Rev. Lett. 92, 093002 (2004).

    Article  ADS  Google Scholar 

  12. O. Bohigas, P. Leboeuf, Phys. Rev. Lett. 88, 092502 (2002); S. Aberg, Nature 417, 499 (2002).

    Article  ADS  Google Scholar 

  13. J. Hirsch, A. Frank, P. Van Isacker, these proceedings.

    Google Scholar 

  14. J. Äystä, P. Dendooven, A. Jokinen, M. Leino (Editors), ENAM01 proceedings (Springer-Verlag, 2002).

    Google Scholar 

  15. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  ADS  Google Scholar 

  16. D. Lunney, G. Audi, H.-J. Kluge (Editors), Atomic Physics at Accelerators: Mass Spectrometry (Kluwer Academic Publishers, Dordrecht, 2001); reprinted from Hyperfine Interact., Vol. 132 (2001).

    Google Scholar 

  17. G. Savard, these proceedings.

    Google Scholar 

  18. H. Savajols, these proceedings.

    Google Scholar 

  19. A.-S. Lallemand et al., Hyperfine Interact. 132, 514 (2001).

    Google Scholar 

  20. H. Geissel et al., Nucl. Phys. A 685, 115c (2001).

    Article  ADS  Google Scholar 

  21. Yu. Litvinov, PhD Thesis, Justus Liebig University, Giessen (2004) and GSI Thesis 2004–05; Yu.A. Litvinov, H. Geissel, T. Radon, F. Attallah, G. Audi, K. Beckert, F. Bosch, M. Falch, B. Franzke, M. Hausmann et al., Nucl. Phys. A 756, 3 (2005).

    Google Scholar 

  22. M. Stadlmann et al., Phys. Lett. B 586, 27 (2004).

    Article  ADS  Google Scholar 

  23. M. Matos, PhD Thesis, Justus Liebig University, Giessen (2004).

    Google Scholar 

  24. E. Kaza, PhD Thesis, Justus Liebig University, Giessen (2004).

    Google Scholar 

  25. D. Lunney et al., Phys. Rev. C 64, 054311 (2001).

    Article  ADS  Google Scholar 

  26. CERN Courier 44, May issue, p. 26 (2004).

    Google Scholar 

  27. C. Bachelet et al., these proceedings.

    Google Scholar 

  28. F. Herfurth et al., these proceedings.

    Google Scholar 

  29. C. Guénaut et al., these proceedings.

    Google Scholar 

  30. J._Van Roosbroeck et al., Phys. Rev. Lett. 92, 112501 (2004).

    Article  ADS  Google Scholar 

  31. A. Kellerbauer et al., Phys. Rev. Lett. 93, 072502 (2004).

    Article  ADS  Google Scholar 

  32. M. Mukherjee et al., Phys. Rev. Lett. 93, 150801 (2004).

    Article  ADS  Google Scholar 

  33. J.A. Clark et al., these proceedings.

    Google Scholar 

  34. Wang et al., these proceedings.

    Google Scholar 

  35. J.A. Clark et al., Phys. Rev. Lett. 92, 192501 (2003).

    Article  ADS  Google Scholar 

  36. V. Kolhinen, PhD Thesis, University of Jyväskylä (2003).

    Google Scholar 

  37. V. Kolhinen et al., Nucl. Instrum. Methods A 528, 776 (2004).

    Article  ADS  Google Scholar 

  38. S. Rinta-Antila et al., Phys. Rev. C 70, 011304(R) (2004).

    Article  ADS  Google Scholar 

  39. A. Jokinen et al., these proceedings.

    Google Scholar 

  40. G. Bollen et al., these proceedings.

    Google Scholar 

  41. M. Block et al., these proceedings.

    Google Scholar 

  42. D. Habs et al., these proceedings.

    Google Scholar 

  43. J. Dilling et al., these proceedings.

    Google Scholar 

  44. F. Sarazin et al., Phys. Rev. Lett. 84, 5062 (2000).

    Article  ADS  Google Scholar 

  45. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  46. G. Savard et al., Phys. Rev. C 70, 042501(R) (2004).

    Article  ADS  Google Scholar 

  47. M. Chartier, private communication (2004); M.B. Hornillos Gomez et al., in preparation.

    Google Scholar 

  48. C. Weber, the ISOLTRAP Collaboration, these proceedings.

    Google Scholar 

  49. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003).

    Article  ADS  Google Scholar 

  50. P. Delahaye, the ISOLTRAP Collaboration, private communication (2004).

    Google Scholar 

  51. G.F. Lima et al., Phys. Rev. C 65, 044618 (2002).

    Article  ADS  Google Scholar 

  52. A. Woehr et al., Nucl. Phys. A 742, 349 (2004).

    Article  ADS  Google Scholar 

  53. Issmer et al., Eur. Phys. J. A 2, 173 (1998).

    Article  ADS  Google Scholar 

  54. G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993).

    Article  ADS  Google Scholar 

  55. C.J. Barton et al., Phys. Rev. C 67, 034310 (2003).

    Article  ADS  Google Scholar 

  56. C. Weber, the SHIPTRAP Collaboration, these proceedings.

    Google Scholar 

  57. W. Plass, S. Eliseev, University of Giessen (IONAS), private communication (2004).

    Google Scholar 

  58. P. Hausladen et al., these proceedings.

    Google Scholar 

  59. http://www.gsi.de/zukunftsprojekt/index e.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Lunney, D. (2005). Latest trends in the ever-surprising field of mass measurements. In: Gross, C.J., Nazarewicz, W., Rykaczewski, K.P. (eds) The 4th International Conference on Exotic Nuclei and Atomic Masses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37642-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-37642-9_1

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28441-3

  • Online ISBN: 978-3-540-37642-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics