Nucleosome Structure and Function

  • J. V. Chodaparambil
  • R. S. Edayathumangalam
  • Y. Bao
  • Y. -J. Park
  • K. Luger
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 57)

Abstract

It is now widely recognized that the packaging of genomic DNA, together with core histones, linker histones, and other functional proteins into chromatin profoundly influences nuclear processes such as transcription, replication, DNA repair, and recombination. How chromatin structure modulates the expression of knowledge encoded in eukaryotic genomes, and how these processes take place within the context of a highly complex and compacted genomic chromatin environment remains a major unresolved question in biology. Here we review recent advances in nucleosome structure and dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins MW, Howar SR, Tyler JK (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14:657–666PubMedCrossRefGoogle Scholar
  2. Akey CW, Luger K (2003) Histone chaperones and nucleosome assembly. Curr Opin Struct Biol 13:6–14PubMedCrossRefGoogle Scholar
  3. Arents G, Moudrianakis EN (1995) The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci U S A 92:11170–11174PubMedCrossRefGoogle Scholar
  4. Baer BW, Rhodes D (1983) Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301:482–488PubMedCrossRefGoogle Scholar
  5. Bao Y, Konesky K, Park YJ, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2ABbd organize only 118 base pairs of DNA. EMBO J 23:3314–3324PubMedCrossRefGoogle Scholar
  6. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093PubMedCrossRefGoogle Scholar
  7. Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148PubMedCrossRefGoogle Scholar
  8. Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL (2004) Global nucleosome occupancy in yeast. Genome Biol 5:R62PubMedCrossRefGoogle Scholar
  9. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD (2003) Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell 11:1587–1598PubMedCrossRefGoogle Scholar
  10. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD (2004) Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol Cell 14:667–673PubMedCrossRefGoogle Scholar
  11. Cairns BR (2005) Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr Opin Genet Dev 15:185–190PubMedCrossRefGoogle Scholar
  12. Chakravarthy S, Bao Y, Roberts VA, Tremethick D, Luger K (2004) Structural characterisation of histone H2A variants. Cold Spring Harb Symp Quant Biol 69:227–234PubMedCrossRefGoogle Scholar
  13. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9: a resolution. J Mol Biol 319:1097–1113PubMedCrossRefGoogle Scholar
  14. Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 13:284–299PubMedCrossRefGoogle Scholar
  15. Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327:85–96PubMedCrossRefGoogle Scholar
  16. Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573PubMedCrossRefGoogle Scholar
  17. Edayathumangalam RS, Weyermann P, Dervan PB, Gottesfeld JM, Luger K (2005) Nucleosomes in solution exist as a mixture of twist-defect states. J Mol Biol 345:103–114PubMedCrossRefGoogle Scholar
  18. Farris SD, Rubio ED, Moon JJ, Gombert WM, Nelson BH, Krumm A (2005) Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem 280:25298–25303PubMedCrossRefGoogle Scholar
  19. Flaus A, Owen-Hughes T (2003a) Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol Cell Biol 23:7767–7779PubMedCrossRefGoogle Scholar
  20. Flaus A, Owen-Hughes T (2003b) Mechanisms for nucleosome mobilization. Biopolymers 68:563–578PubMedCrossRefGoogle Scholar
  21. Flaus A, Owen-Hughes T (2004) Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr Opin Genet Dev 14:165–173PubMedCrossRefGoogle Scholar
  22. Gottesfeld JM, Melander C, Suto RK, Raviol H, Luger K, Dervan PB (2001) Sequence-specific recognition of DNA in the nucleosome by pyrroleimidazole polyamides. J Mol Biol 309:625–639CrossRefGoogle Scholar
  23. Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants mechanisms Functions. Annu Rev Biophys Biomol Struct 31:361–392PubMedCrossRefGoogle Scholar
  24. Jackson V (1990) In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:719–731PubMedCrossRefGoogle Scholar
  25. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  26. Kimura H, Cook PR (2001) Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153:1341–1353PubMedCrossRefGoogle Scholar
  27. Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM (2002) Nucleosome remodeling induced by RNAPolymerase II Loss of the H2A/H2B dimer during transcription. Mol Cell 9:541–552PubMedCrossRefGoogle Scholar
  28. Korber P, Horz W (2004) SWRred not shaken: mixing the histones. Cell 117:5–7PubMedCrossRefGoogle Scholar
  29. Korber P, Luckenbach T, Blaschke D, Horz W (2004) Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol Cell Biol 24:10965–10974PubMedCrossRefGoogle Scholar
  30. Kornberg RD, Lorch Y (1991) Irresistible force meets immovable object: transcription and the nucleosome. Cell 67:833–836PubMedCrossRefGoogle Scholar
  31. Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36:900–905PubMedCrossRefGoogle Scholar
  32. Levchenko V, Jackson V (2004) Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome. Biochemistry 43:2359–2372PubMedCrossRefGoogle Scholar
  33. Levchenko V, Jackson B, Jackson V (2005) Histone release during transcription: displacement of the two H2A-H2B dimers in the nucleosome is dependent on different levels of transcription-induced positive stress. Biochemistry 44:5357–5372PubMedCrossRefGoogle Scholar
  34. Li G, Widom J (2004) Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11:763–769PubMedCrossRefGoogle Scholar
  35. Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12:46–53PubMedCrossRefGoogle Scholar
  36. Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 13:127–135PubMedCrossRefGoogle Scholar
  37. Luger K, Hansen JC (2005) Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol 15:188–196PubMedCrossRefGoogle Scholar
  38. Luger K, Richmond TJ (1998a) DNA binding within the nucleosome core. Curr Opin Struc Biol 8:33–40CrossRefGoogle Scholar
  39. Luger K, Richmond TJ (1998b) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146PubMedCrossRefGoogle Scholar
  40. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997a) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–259PubMedCrossRefGoogle Scholar
  41. Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ (1997b) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272:301–311PubMedCrossRefGoogle Scholar
  42. Park YJ, Dyer PN, Tremethick DJ, Luger K (2004) A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279:24274–24282PubMedCrossRefGoogle Scholar
  43. Park YJ, Chodaparambil JV, Bao Y, McBryant SJ, Luger K (2005) Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding. J Biol Chem 280:1817–1825PubMedCrossRefGoogle Scholar
  44. Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254:130–149PubMedCrossRefGoogle Scholar
  45. Polach KJ, Widom J (1996) A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol 258:800–812PubMedCrossRefGoogle Scholar
  46. Reinke H, Horz W (2003) Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell 11:1599–1607PubMedCrossRefGoogle Scholar
  47. Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150PubMedCrossRefGoogle Scholar
  48. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedCrossRefGoogle Scholar
  49. Sullivan S, Sink DW, Trout KL, Makalowska I, Taylor PM, Baxevanis AD, Landsman D (2002) The histone database. Nucleic Acids Res 30:341–342PubMedCrossRefGoogle Scholar
  50. Suto RK, Edayathumangalam RS, White CL, Melander C, Gottesfeld JM, Dervan PB, Luger K (2003) Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J Mol Biol 326:371–380PubMedCrossRefGoogle Scholar
  51. Tsunaka Y, Kajimura N, Tate S, Morikawa K (2005) Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle. Nucleic Acids Res 33:3424–3434PubMedCrossRefGoogle Scholar
  52. Van Holde KE (1988) Chromatin. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  53. Walfridsson J, Bjerling P, Thalen M, Yoo EJ, Park SD, Ekwall K (2005) The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res 33:2868–2879PubMedCrossRefGoogle Scholar
  54. White CL, Luger K (2004) Defined structural changes occur in a nucleosome upon Amt1 transcription factor binding. J Mol Biol 342:1391–1402PubMedCrossRefGoogle Scholar
  55. Whitlock JP Jr, Stein A (1978) Folding of DNA by histones which lack their NH2-terminal regions. J Biol Chem 253:3857–3861PubMedGoogle Scholar
  56. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL et al. (2005) Formation of Macro H2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30PubMedCrossRefGoogle Scholar
  57. Zhu Z, Thiele DJ (1996) A specialized nucleosome modulates transcription factor access to a C glabrata metal responsive promoter. Cell 87:459–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. V. Chodaparambil
    • 1
  • R. S. Edayathumangalam
    • 1
  • Y. Bao
    • 1
  • Y. -J. Park
    • 1
  • K. Luger
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsUSA

Personalised recommendations