Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762–770PubMedGoogle Scholar
  2. 2.
    Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169PubMedGoogle Scholar
  3. 3.
    Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Archives of Microbiology 166: 176–183PubMedCrossRefGoogle Scholar
  4. 4.
    Bjorneklett A, Jenssen E (1982) Relationships between hydrogen (H2) and methane (CH4) production in man. Scand J Gastroenterol 17: 985–992PubMedGoogle Scholar
  5. 5.
    Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273: 1380–1383PubMedGoogle Scholar
  6. 6.
    Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Amer J Clin Nutr 25: 1324–1328PubMedGoogle Scholar
  7. 7.
    Bullen CL, Tearle PV, Willis AT (1976) Bifidobacteria in the intestinal tract of infants: an in-vivo study. J Med Microbiol 9: 325–333.PubMedGoogle Scholar
  8. 8.
    Bullen CL, Willis AT (1971) Resistance of the breast-fed infant to gastroenteritis. Br Med J 3: 338–343.PubMedCrossRefGoogle Scholar
  9. 9.
    Chadwick RW, George SE, Claxton LD (1992) Role of the gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metabolism Rev 24: 425–492Google Scholar
  10. 10.
    Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann Rev Microbiol 41: 435–464CrossRefGoogle Scholar
  11. 11.
    Cummings JH (1994) Anatomy and physiology of the human colon. In: ILSI Worksshop on colonic microflora: Nutrition and health, Barcelona, SpainGoogle Scholar
  12. 12.
    Cummings JH (1995) Short chain fatty acids. In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria: role in nutrition, physiology and pathology. CRC Press, Boca Raton, pp 101–130Google Scholar
  13. 13.
    Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. Journal Of Applied Bacteriology 70: 443–459PubMedGoogle Scholar
  14. 14.
    Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221–1227PubMedGoogle Scholar
  15. 15.
    Cummings JH, Wiggins HS, Jenkins DJ, Houston H, Jivraj T, Drasar BS, Hill MJ (1978) Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion. J Clin Invest 61: 953–963.PubMedCrossRefGoogle Scholar
  16. 16.
    DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 243: 1360–1363PubMedGoogle Scholar
  17. 17.
    Drasar BS, Duerden BI (1991) Anaerobes in the normal flora of man. In: Drasar BS, Duerden BI (eds) Anaerobes in human disease. Edward Arnold, London, Melbourne, Auckland, pp 162–179Google Scholar
  18. 18.
    Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Fd Chem Toxic 33: 1061–1080CrossRefGoogle Scholar
  19. 19.
    Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64: 3336–3345PubMedGoogle Scholar
  20. 20.
    Freter R (1983) Mechanisms that control the microflora in the large intestine. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York/London, pp 33–54Google Scholar
  21. 21.
    Gherardini F, Babcock M, Salyers AA (1985) Purification and characterization of two alpha-galactosidases associated with catabolism of guar gum and other alpha-galactosides by Bacteroides ovatus. J Bacteriol 161: 500–506.PubMedGoogle Scholar
  22. 22.
    Goldin BR (1986) The metabolism of the intestinal microflora and its relationship to dietary fat, colon and breast cancer. Progress in Clinical and Biological Research 222: 655–685PubMedGoogle Scholar
  23. 23.
    Harmsen HJ, Wildeboer-Veloo AC, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66: 4523–4527PubMedCrossRefGoogle Scholar
  24. 24.
    Holdeman LV, Good IJ, Moore WEC (1976) Human fecal flora: Variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31: 359–375PubMedGoogle Scholar
  25. 25.
    Holdeman LV, Moore WE (1972) Roll-tube techniques for anaerobic bacteria. Am J Clin Nutr 25: 1314–1317PubMedGoogle Scholar
  26. 26.
    Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96: 9833–9838PubMedCrossRefGoogle Scholar
  27. 27.
    Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. Academic Press, New York, LondonGoogle Scholar
  28. 28.
    Hylemon PB, Glass TL (1983) Biotransformation of bile acids and cholesterol by the intestinal microflora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, pp 189–214Google Scholar
  29. 29.
    Kamlage B, Blaut M (1993) Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides incapable of oxidizing methyl groups. J Bacteriol 175: 3043–3050PubMedGoogle Scholar
  30. 30.
    Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61: 3069–3075PubMedGoogle Scholar
  31. 31.
    Ludwig W, Strunk O, Klugbauer S et al. (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19: 554–568PubMedCrossRefGoogle Scholar
  32. 32.
    Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J General Microbiol 132: 1647–1656Google Scholar
  33. 33.
    Macfarlane GT, Macfarlane S (1997) Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl 222: 3–9PubMedGoogle Scholar
  34. 34.
    McCarthy RE, Kotarski SF, Salyers AA (1985) Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J Bacteriol 161: 493–499PubMedGoogle Scholar
  35. 35.
    Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62: 1589–1592PubMedGoogle Scholar
  36. 36.
    Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27: 961–679PubMedGoogle Scholar
  37. 37.
    Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 216: 132–148PubMedGoogle Scholar
  38. 38.
    Pitt P, de Bruijn KM, Beeching MF, Goldberg E, Blendis LM (1980) Studies on breath methane: the effect of ethnic origins and lactulose. Gut 21: 951–954.PubMedGoogle Scholar
  39. 39.
    Roediger WE (1980) The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 2: 712–715PubMedCrossRefGoogle Scholar
  40. 40.
    Roediger WE, Duncan A, Kapaniris O, Millard S (1993) Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin Sci (Colch) 85: 623–627PubMedGoogle Scholar
  41. 41.
    Roediger WEW (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa of man. Gut 21: 793–798PubMedGoogle Scholar
  42. 42.
    Rotimi VO, Duerden BI (1981) The development of the bacterial flora in normal neonates. J Med Microbiol 14: 51–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Salyers AA, Gherardini F, O’Brien M (1981) Utilization of xylan by two species of human colonic Bacteroides. Appl Environ Microbiol 41: 1065–1068PubMedGoogle Scholar
  44. 44.
    Salyers AA, Leedle JAZ (1983) Carbohydrate metabolism in the human colon. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York, London, pp 129–146Google Scholar
  45. 45.
    Salyers AA, O’Brien M, Kotarski SF (1982) Utilization of chondroitin sulfate by Bacteroides thetaiotaomicron growing in carbohydrate-limited continuous culture. J Bacteriol 150: 1008–1015PubMedGoogle Scholar
  46. 46.
    Salyers AA, Palmer JK, Wilkins TD (1977) Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Appl Environ Microbiol 33: 1118–1124.PubMedGoogle Scholar
  47. 47.
    Salyers AA, West SE, Vercellotti JR, Wilkins TD (1977) Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34: 529–533.PubMedGoogle Scholar
  48. 48.
    Schneider H, Schwiertz A, Collins MD, Blaut M (1999) Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol 171: 81–91PubMedCrossRefGoogle Scholar
  49. 49.
    Schwiertz A, Le Blay G, Blaut M (2000) Quantification of different Eubacterium spp in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 66: 375–382PubMedCrossRefGoogle Scholar
  50. 50.
    Segal I, Walker ARP, Lord S, Cummings JH (1988) Breath methane and large bowel cancer risk in contrasting african populations. Gut 29: 608–613PubMedGoogle Scholar
  51. 51.
    Setchell KDR, Borriello SP, Gordon H, Lawson AM, Harkness R, Morgan DML, Kirk DN, Adlercreutz H, Anderson LC, Axelson M (1981) Lignan formation in man-microbial involvement and possible roles in relation to cancer. Lancet 4: 4–7CrossRefGoogle Scholar
  52. 52.
    Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Doré J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66: 2263–2266PubMedCrossRefGoogle Scholar
  53. 53.
    Simmering R, Kleessen B, Blaut. M (1999) Quantification of the flavonoid-degrading bacterium Eubacterium ramulus in human fecal samples with a species-specific oligonucleotide hybridization probe. Appl Environ Microbiol 65: 3705–3709PubMedGoogle Scholar
  54. 54.
    Smith KA, Salyers AA (1989) Cell-associated pullulanase from Bacteroides thetaiotaomicron: cloning, characterization, and insertional mutagenesis to determine role in pullulan utilization. J Bacteriol 171: 2116–2123.PubMedGoogle Scholar
  55. 55.
    Smith KA, Salyers AA (1991) Characterization of a neopullulanase and an alpha-glucosidase from Bacteroides thetaiotaomicron 95-1. J Bacteriol 173: 2962–2968.PubMedGoogle Scholar
  56. 56.
    Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65: 4799–4807PubMedGoogle Scholar
  57. 57.
    Summerton J, Goeting N, Trotter GA, Taylor I (1985) Effect of deoxycholic acid on the tumour incidence, distribution, and receptor status of colorectal cancer in the rat model. Digestion 31: 77–81PubMedCrossRefGoogle Scholar
  58. 58.
    Tannock GW (1995) Normal microflora. Chapman & Hall, LondonGoogle Scholar
  59. 59.
    Variyam EP, Hoskins LC (1981) Mucin degradation in human colon ecosystems. Degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology 81: 751–758.PubMedGoogle Scholar
  60. 60.
    Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59: 1520–1525.PubMedGoogle Scholar
  61. 61.
    Weaver GA, Krause JA, Miller TL, Wolin MJ (1992) Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. Am J Clin Nutr 55: 70–77PubMedGoogle Scholar
  62. 62.
    Weaver GA, Tangel CT, Krause JA, Parfitt MM, Jenkins PL, Rader JM, Lewis BA, Miller TL, Wolin MJ (1997) Acarbose enhances human colonic butyrate production. J Nutr 127: 717–723PubMedGoogle Scholar
  63. 63.
    Weaver J, Whitehead TR, Cotta MA, Valentine PC, Salyers AA (1992) Genetic analysis of a locus on the Bacteroides ovatus chromosome which contains xylan utilization genes. Appl Environ Microbiol 58: 2764–2770PubMedGoogle Scholar
  64. 64.
    Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62: 2273–2278PubMedGoogle Scholar
  65. 65.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • M. Blaut
    • 1
  1. 1.Abt. Gastrointestinale MikrobiologieDeutsches Institut für ErnährungsforschungNuthetal

Personalised recommendations