Skip to main content

Yeasts and food spoilage

  • Chapter
  • First Online:
Functional Genetics of Industrial Yeasts

Part of the book series: Topics in Current Genetics ((TCG,volume 2))

  • 738 Accesses

Abstract

Food processing is concerned with the proper conversion of raw materials to value added end products fit for consumption. During the process, microbiological contamination of raw materials has to be inactivated and re-contaminat ion during processing or upon product storage has to be prevented.

In this chapter, we stress the need for active research and surveillance of the ecology and molecular biology of food spoilage yeasts. We briefly highlight the main developments in the area. Subsequently, the research geared to identifying new anti-yeast targets and the understanding of stress resistance using classical approaches is discussed. Most important is the discussion of sorbic acid resistance, the weak-organic acid food preservative used in the majority of cases. We discuss the evidence in favour of an involvement of ATP driven acid and anion extrusion pumps in resistance development, but we also highlight the incompleteness of the current model. Modern approaches using genome-wide screening of stress responses offer new tools for an assessment of the full picture of stress reactions. We indicate examples of this and discuss the bioinformatics methods that go with genomics experiments in order to extract the appropriate knowledge from the data. Yeast stress physiology, genetics and ‘functional genomics’, is put in a perspective of future research and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abee T and Wouters JA (1999) Microbial stress response in minimal processing. Int J Food Microbiol 50:65–91

    Article  CAS  Google Scholar 

  • Alwazeer D, Cachon R and Divies C. (2002) Behavior of Lactobacillus plartarum and Saccharomyces cerevisiae in fresh and thermally processed orange juice. J Food Prot 65:1586–1589

    Google Scholar 

  • Ambesi A, Miranda M, Petrov VV and Slayman W (2000) Biogenesis and function of the yeast plasma-membrane IT-ATPase. J Exp Biol 203 155–160

    CAS  Google Scholar 

  • Andrews PD and Stark MJ (2000) Dynamic, Eholp-dependent localization of Pkclp to sites of polarized growth. J Cell Sci 113:2685–2693

    CAS  Google Scholar 

  • Baird-Parker AC, Buchanan EL, Busta FF, Cole MB, Doyle, MP, Eyles M, Farkas J, Flowers RS, Jouve JL and Mendoza S(1998) Soft drinks, fruit juices, concentrates and fruit preserves. In Robers TA, Pitt JI, Farkas J and Grau FH(eds) Microorganisms in foods 6:microbial ecology of food commodities. Blackie Academic & Proffessional, London, United Kingdom, pp. 440–460

    Google Scholar 

  • Baleiras Couto MM, Hartog BJ, Huis in’ t, Veld JHJ, Hofstra H and van der Vossen JMBM (1996) Identification of spoilage yeasts in a food-production chain by micro satellite polymerase chain reaction fingerprinting. Food Microbiol 13:59–67

    Article  Google Scholar 

  • Boles E and Hollenberg CP(1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev21:85–111

    Article  CAS  Google Scholar 

  • Bom U, Klis FM, deNobel H and Brul S (2001) A new strategy for inhibition of the spoilage yeast Saccharomyces cerevisiae and Zygosaccharomyces bailii based on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidulinositol (GPI)-dependent yeast wall protein layer. FEMS Yeast Research 1:187–194

    CAS  Google Scholar 

  • Boot RG, Renkema GH, Strijland A, van Zonneveld AJ and Aerts JMFG(1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 270:26252–26256

    Article  CAS  Google Scholar 

  • Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A and Aerts JFMG (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276:6770–6778

    Article  CAS  Google Scholar 

  • Brown JL, North S and Bussey H(1993) SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175:6908–6915

    CAS  Google Scholar 

  • Brul S and Coote PJ (1999) Preservative agents in foods. Mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    Article  CAS  Google Scholar 

  • Brul S, Coote P, Dielbandhoesing SK, Naaktgeboren G, Stam WM and Stratford M(1997) Natural composition for combatting fungi. WO-Patent 97/16973

    Google Scholar 

  • Brul S, Klis FM, Oomes SJCM, Montijn RC, Schuren FHJ, Coote P and Hellingwerf KJ (2002) Detailed process design based on genomics of survivors of food preservation processes. Trends Food Sci & Technol 13:325–333

    Article  CAS  Google Scholar 

  • Brul S, Rommens A and Venips C.T(2000) Mechanistic studies on the inactivation of Saccharomyces cerevisiae by high pressure. Innov Food Sci Emerg Technol 1:99–108

    Article  CAS  Google Scholar 

  • Bussemaker HJ, Li H and Siggia ED (2001) Regulatory element detection using correlation with expression. Nat Genet 27:167–171

    Article  CAS  Google Scholar 

  • Cabib E, Roh DH, Schmidt M, Crotti LB and Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682

    Article  CAS  Google Scholar 

  • Cappellaro C, Mrsa V and Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement inmating. J Bacteriol 180:5030–5037

    CAS  Google Scholar 

  • Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H and Klis FM (1997) In silicio identification of glycosyl-phosphati-dylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Article  CAS  Google Scholar 

  • Cheng L, Moghraby J and Piper PW(1999) Weak organic acid treatment causes a trehalose accumulation in low-pH cultures of Saccharomyces cerevisiae, not displayed by the more preservative-resistant Zygosaccharomyces bailii. FEMS Microbiol Lett 170:89–95

    Article  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins-safe natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  • Davidson PM and Harrison MA (2002) Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technology 56:69–78

    Google Scholar 

  • Deak T (1991) Food borne yeasts. Adv Appl Microbiol 39:179–273

    Article  Google Scholar 

  • De Boer E and Nielsen PV(1995) Food preservatives. In RA. Samson, E.S. Hoekstra, J.C. Frisvad and O. Filtenborg (eds), Introduction of food-borne fungi. Centraalbureau voor schimmelcultures, Wageningen, The Netherlands, pp. 289–293

    Google Scholar 

  • De Nobel JG, Klis FM, Priem J, Munnik T and van den Ende H(1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499.

    Article  Google Scholar 

  • De Nobel H, Ruiz C, Martin H, Morris W, Brul S, Molina M and Klis FM(2000) Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpkl MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and ther-motolerance. Microbiology 146:2121–2132

    Google Scholar 

  • De Nobel H, Sietsma JH, van den Ende H and Klis FM(2001) Molecular organization and construction of the fungal cell wall. In: The My cota VUE Biology of the Fungal Cell (Howard RJ and Gow NAR, Eds.) Springer Verlag Berlin

    Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 24:680–686

    Article  Google Scholar 

  • Diederich JA, Schepper M, van Hoek P, Luttik MAH, van Dijken JP, Pronk JT, Klaassen P, Boelens HFM, Teixeira de Mattos MJ, van Dam K and Kruckberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359

    Article  Google Scholar 

  • Dijkgraaf GJ, Brown JL and Bussey H (1996) The KNH1 gene of Saccharomyces cerevisiae is a functional homologue of KRE9. Yeast 12:683–692

    Article  CAS  Google Scholar 

  • Donzeau M, Bourdineaud JP and Lauquin GJ (1996) Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane protein. Mol Microbiol 20:449–459

    Article  CAS  Google Scholar 

  • Douglas CM, D’Ippoleto JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, Mitchell A and Kurtz MB (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479

    CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 25:14863–14868

    Article  Google Scholar 

  • Fleet G (1992) Spoilage yeasts. Crit Rev Biotechnol 12:1–44

    Article  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revueita JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke ID, Snyder M, Philippsen P, Davis RW, Johnston M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 25:387–391

    Article  CAS  Google Scholar 

  • Goldman RC, Sullivan PA, Zakula D and Capobianco JO (1995) Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glueosyltransferase encoded by the BGL2 gene. Eur J Biochem 227:372–378

    Article  CAS  Google Scholar 

  • Georgopapadakou NH and Tkacz JS (1995) The fungal cell wall as a drug target. Trends Microbiol 3:98–104

    Article  CAS  Google Scholar 

  • Gould GW (2000) Preservation past, present and future. Br Med Bull 56:84–96

    Article  CAS  Google Scholar 

  • Groot PWJ de, Hellingwerf KJ and Klis FM (2003) Genome-wide identification of fungal GPI-proteins. Yeast (submitted)

    Google Scholar 

  • Holan Z, Pokorny V, Beran K, Gemperle A, Tuzar Z and Baldrian J (1981) The glucanchitin complex in Saccharomyces cerevisiae; Precise location of chitin and glucan in bud scar and their physico-chemical haracterization. Arch Microbiol 130:312–318

    Article  CAS  Google Scholar 

  • Horsch M, Mayer C, Sennhauser U and Rast DM (1997) Beta-N-acetylhexosaminidase:a target for the design of antifungal agents. Pharmacol Ther 76:187–218

    Article  CAS  Google Scholar 

  • Kapteyn JC, Van Egmond P, Sievi E, Van Den Ende H, Makarow M and Klis FM(1999) The contribution of the O-glycosy-lated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta 1,6-glucan-defcient mutants. Mol Mi crobiol 31:1835–1844

    Article  CAS  Google Scholar 

  • Kapteyn JC, ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H and Klis FM (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479

    Article  CAS  Google Scholar 

  • Ketela T, Green R and Bussey H (1999) Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181:3330–3340

    CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf, KJ and Brul S (2002) Dynamics in cell wall structure in S cerevisiae. FEMS Microbiol Rev 738:1–18

    Google Scholar 

  • Kolaczkowski M, Kolaczowska A, Luczynski J, Witek S and Goffeau A (1998) In vivo characterisation of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist 4:143–158

    Article  CAS  Google Scholar 

  • Kruckeberg AL, Walsh MC and van Dam K (1998) How do yeast cells sense glucose? Bioessays 20L 972–976

    Article  Google Scholar 

  • Lado BH and Yousef AE (2002) Alternative food-preservation technologies: efficacy and mechanisms. Microbes and Infection 4:433–440

    Article  Google Scholar 

  • Legan JD and Voyset PA (1991) Yeast spoilage of bakery products and ingredients. J. Appl Bacteriol 70:361–371.

    CAS  Google Scholar 

  • Lewis K (2001) In search of natural substrates and inhibitors of MDR pumps. J Mol Microbiol Biotechnol 3:247–254

    CAS  Google Scholar 

  • Lussier M, Sdicu AM, Shahinian S and Bussey H (1998) The Candida albicans KRE9 is required for cell wall beta-1,6-gluean synthesis and is essential for growth on glucose. Proc Natl Acad Sci USA 95:9825–9830

    Article  CAS  Google Scholar 

  • Manavathu EK, Dimmock JR, Vashistha SC and Chandrasekar PH (2001) Inhibition of H(+)-A TPase-mediated proton pumping in Cryptococcus neoformans by a novel conjugated styiyl ketone. J Antimicrob Chemother 47:491–494

    Article  CAS  Google Scholar 

  • Marquardt H (1962) Der Feinbau von Hefezellen im Elektronenmikroskop II Mitt:Saccharomyces cerevisiae- Stämmt. Z Naturforsch 17:689–695

    Google Scholar 

  • Marza E, Camougrand N and Manon S (2002) Bax expression protects yeast plasma membrane against ethanol-induced permeabilisation. FEBS Lett 521:47–52

    Article  CAS  Google Scholar 

  • Mazur P, Morin N, Baginsky W, el-Sharbini M, Clemas JA, Nielsen JB and Foor F(1995) Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol15:5671–5681

    CAS  Google Scholar 

  • Membre JM, Kubaczka M and Chene C (1999) Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Env Microbiol 65:4921–4925

    CAS  Google Scholar 

  • Mensonides FTC, Schuurmans MJ, Teixeira de Mattos J, Hellingwerf KJ and Brul S (2002) The metabolic response of Saccharomyces cerevisiae to continuous heat stress. Mol Biol Reports 29:103–106

    Article  CAS  Google Scholar 

  • Mollapour M, Piper PW (2001) The ZbYME2 gene from the food spoilage yeast Zygosac-charomyces bailu confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol Microbiol 42:919–930

    Article  CAS  Google Scholar 

  • Montijn RC, Vink E, Muller WH, Verkleij AJ, Van Den Ende H, Henrissat B and Klis FM (1999) Localisation of synthesis of beta 1,6-glucanin Saccharomyces cerevisiae. J Bacteriol 181:7414–7420

    CAS  Google Scholar 

  • Morschhauser J (2002) The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587:240–248

    CAS  Google Scholar 

  • Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H(+)-ATPase. Biochim Biophys Acta 1469:133–157

    CAS  Google Scholar 

  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin, M, Popolo L, Hartland RP and Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    Article  CAS  Google Scholar 

  • Mrsa V and Tanner W (1999)Role of NaOH-extractable cell wall proteins Ccw5p,Ccw6p,Ccw7p and Ccw8p (members of the Pir protein family)in stability of the Saccharomyces cerevisiae cell wall. Yeast 15:813–820

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Sakumoto, N., Kaneko, Y., and Harashima S. (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 291:707–713

    Article  CAS  Google Scholar 

  • Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, Cabello A, Vicente F, Pelaez F, Diez MT, Martin I, Bills G, Giacobbe R, Dombrowski A, Schwartz R, Morris S, Harris G, Tsipouras A, Wilson K, Kurtz MB(2000) Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377

    Article  CAS  Google Scholar 

  • Orlean P (1997) Biogenesis of yeast wall and surface components. In: The Molecular and Cellular Biology of the Yeast Saccharomyces. Cell Cycle and Biology (Pringle JR, Broach JR and Jones EW Eds) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY pp 229–362

    Google Scholar 

  • Ovalle R, Lim ST, Holder B, Jue CK, Moore CW and Lipke PN (1998) A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14:1159–1166

    Article  CAS  Google Scholar 

  • Ozean S and Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    Google Scholar 

  • Panaretou B and Piper PW (1992) The plasma membrane of yeast acquires a novel heatshock protein (hsp 30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 206:635–640

    Article  CAS  Google Scholar 

  • Pattison TL and von Holy A (2001) Effect of selected natural antimicrobials on Baker’s yeast activity. Lett Appl Microbiol 33:211–215

    Article  CAS  Google Scholar 

  • Piper P, Ortiz-Calderon C, Holyoak C, Coote P and Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevsiae, is a stress-inducible regulator of plasma membrane HVATPase. Cells Stress Chaperones 2:12–24

    Article  CAS  Google Scholar 

  • Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P and Kuchler K (1998) The Pdrl2 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    Article  CAS  Google Scholar 

  • Piper P, Ortiz C, Hatzixanthis K and Mollapour M (2001) Weak acid adaptation-the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    CAS  Google Scholar 

  • Popolo L and Vai M (1999) The Gasl glycoprotein,a putative wall polymer cross-linker. Biochim Biophys Acta 1426:385–400

    CAS  Google Scholar 

  • Popolo L, Gualtieri T and Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39(Suppl):111–121

    CAS  Google Scholar 

  • Rajavel M, Philip B, Buehrer BM, Errede B and Levin DE (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19:3969–3976

    CAS  Google Scholar 

  • Reifenberg E, Boles E and Ciriacy M (1997) Kinetic characterisation of individual hexose transporters of Saccharomyces cerevisiae and their relation to the trigerring mechanisms of glucose repression. Eur J Biochem 245:324–333

    Article  Google Scholar 

  • Rest van der ME, Kamminga AH, Nakano A, Anraku Y, Poolman B and Konings WN (1995) The plasmamembrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322

    Google Scholar 

  • Rodrigues F, Corte-Real M, Leao C, van Dijken JP and Pronk JT (2001) Oxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media. Appl Environ Microbiol 67:2123–2128

    Article  CAS  Google Scholar 

  • Roller S and Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47:67–77

    Article  CAS  Google Scholar 

  • Sanglard D and Odds FC (2002) Resistance of Candida species to antifungal agents:molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85

    Article  CAS  Google Scholar 

  • Shahinian S and Bussey H (2000) Beta-1,6-gluean synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    Article  CAS  Google Scholar 

  • Shearer AEH, Mazzotta AS, Chuyate R and Gombas DE (2002) Heat Resistance of Juice Spoilage Microorganisms. J Food Prot 65:1271–1275

    Google Scholar 

  • Smelt JPPM, Hellemons JC, and Patterson M (2002a) Effects of high pressure on vegetative microorganisms, in Ultra High Pressure Treatment of Foods, Hendrickx MEG and Knorr D (eds) Kluwer Academic, NY. (in press)

    Google Scholar 

  • Smelt JPPM, Hellemons J and Brul S (2002b) Physiological aspects of Pressure decontamination in building inactivation models, in Trends in High Pressure Bioscience & Biotechnology, Hayashi, H (ed) Elsevier, New York pp. 487–496.

    Google Scholar 

  • Stratford M, Bond CJ, James SA, Roberts N and Steels H (2002) Candida davenport: sp. nov., a potential soft-drinks spoilage yeast isolated from a wasp. Int J Syst Evol Microbiol 52:1369–1375

    Article  CAS  Google Scholar 

  • Steeg-ter PF, Otten GD, Alderliesten M, de Weijer R, Naaktgeboren G, Bijl J, Vasbinder AJ, Kershof I, and van Duijvendijk AM (2001) Modelling the effects of (green) antifungals, droplet size distribution and temperature on mould outgrowth in water-in-oil emulsions. Int J Food Microbiol 67:227–239

    Article  Google Scholar 

  • Steels H, James SA, Roberts IN and Stratford M (1999) Zygosaccharomyces lentus:a significant new osmophilic, preservative resistant spoilage yeast, capable of growth at low temperature. J Appl Microbiol 87:520–527

    Article  CAS  Google Scholar 

  • Stratford M and Anslow PA (1998) Evidence that sorbic acid does not inhibit yeast as a classical weak acid ‘weak acid preservative’. Lett Appl Microbiol 27:203–206

    Article  CAS  Google Scholar 

  • Takehiko Sahara, Takako Goda, and Satoru Ohgiya (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J. Biol. Chem. 277:50015–50021

    Article  Google Scholar 

  • Thompson JR, Douglas CM, Li W, Jue CK, Pramanik B, Yuan X, Rude TH, Toffaletti DL, Perfect JR and Kurtz M (1999) A glucan synthase FKS1 homologue in Cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol 181:444–453

    CAS  Google Scholar 

  • Toh-e A, Yasunaga S, Nisogi H, Tanaka K, Oguchi T and Matsui Y (1993) Three yeast genes,PIRl,PIR2 and PIR3, containing internal tandem repeats,are related to each other,and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9:481–494

    Article  CAS  Google Scholar 

  • Tokuoka K (1993) Sugar-and salt-tolerant yeasts. J Appl Bacteriol 74:101–110

    Google Scholar 

  • Valdivieso MH, Ferrario L, Vai M, Duran A and Popolo L (2000) Chitin synthesis in a gasl mutant of Saccharomyces cerevisiae. J Bacteriol 182:4752–4757

    Article  CAS  Google Scholar 

  • Van der Vossen JMBM, Rahaoui H, De Nijs MWCM and Hartog BJ(2003) PCR methods for tracing and detection of yeasts in the food chain. In Boekhout T and Robert V (eds) Yeasts, Behr’s Verlag GmbH & Co, Hamburg, Germany (In Press)

    Google Scholar 

  • Vasconcelles, M. J., Jiang, Y., McDaid, K., Gilooly, L., Wretzel, S., Porter, D. L., Martin, C. E., and Goldberg, M. A. (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem 276, 14374–14384

    CAS  Google Scholar 

  • Verna J, Lodder A, Lee K, Vagts A and Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA94:13804–13809

    Article  CAS  Google Scholar 

  • Verwaal R, Paalman JW, Hogenkamp A, Verkleij A, Verrips CT and Boonstra J (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038

    Article  CAS  Google Scholar 

  • Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F(2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    Article  CAS  Google Scholar 

  • Vos WM-de (2001) Advances in genomics for microbial food fermentations and safety. Curr Opin Biotechnol 12:493–498

    Article  Google Scholar 

  • Waniska RD, Venkathesa RT, Chandrashekar A, Krishnaveni S, Bejosano FP, Jeoung J, Jayaraj, Muthukrishnan S and Liang GH (2001) Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold. J Agricult Food Chem 49:4732–4742

    Article  CAS  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP and Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake uptake of hexoses in Saccharomyces. FEBS Lett 464:123–128

    Article  CAS  Google Scholar 

  • Wouters PC, Alvarez I and Raso J (2001a) Critical factors determining inactivation kinetics by pulsed electric food processing. Trends Food Sci Technol 12:112–121

    Article  CAS  Google Scholar 

  • Wouters PC, Bos AP and Ueckert J (2001b) Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl Env Microbiol 67:3092–3101

    Article  CAS  Google Scholar 

  • Zu T, Verna J and Ballester R (2001) Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlml-dependent gene expression in Saccharomyces cerevisiae. Mol Genet Genomics 266:142–155

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brul, S., van der Vossen, J., Boorsma, A., Klis, F.M. (2003). Yeasts and food spoilage. In: de Winde, J.H. (eds) Functional Genetics of Industrial Yeasts. Topics in Current Genetics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37003-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-37003-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02489-7

  • Online ISBN: 978-3-540-37003-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics