Skip to main content

Dynamics of Magnetization Reversal in Models of Magnetic Nanoparticles and Ultrathin Films

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 593))

Abstract

We discuss numerical and theoretical results for models of magnetization switching in nanoparticles and ultrathin films. The models and computational methods include kinetic Ising and classical Heisenberg models of highly anisotropic magnets which are simulated by dynamic Monte Carlo methods, and micromagnetics models of continuum-spin systems that are studied by finite-temperature Langevin simulations. The theoretical analysis builds on the fact that a magnetic particle or film that is magnetized in a direction antiparallel to the applied field is in a metastable state. Nucleation theory is therefore used to analyze magnetization reversal as the decay of this metastable phase to equilibrium. We present numerical results on magnetization reversal in models of nanoparticles and films, and on hysteresis in magnets driven by oscillating external fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Dormann, D. Fiorani, eds.: Magnetic Properties of Fine Particles, (North Holland, New York 1992)

    Google Scholar 

  2. M.F. Crommie, C.P. Lutz, D.M. Eigler: Science 262, 218 (1993).

    Article  ADS  Google Scholar 

  3. A.D. Kent, T.M. Shaw, S. von Molnár, D.D. Awschalom: Science 262, 1250 (1993)

    Article  ADS  Google Scholar 

  4. A.D. Kent, S. von Molnár, S. Gider, D. D. Awschalom: J. Appl. Phys. 76, 6656 (1994)

    Article  ADS  Google Scholar 

  5. W.W. Pai, J.D. Zhang, J.F. Wendelken, R.J. Warmack: J. Vacuum Science & Technology B 15, 785 (1997)

    Article  ADS  Google Scholar 

  6. S. Gider et al.: Appl. Phys. Lett. 69, 3269 (1996)

    Article  ADS  Google Scholar 

  7. H.N. Bertram: Theory of Magnetic Recording (Cambridge U. Press, Cambridge 1994)

    Book  Google Scholar 

  8. S.Y. Chou, M.S. Wei, P.R. Krauss, P.B. Fischer: J. Appl. Phys. 76, 6673 (1994)

    Article  ADS  Google Scholar 

  9. M.A. Novotny, P.A. Rikvold: ‘Magnetic Particles’. In: Encyclopedia of Electrical and Electronics Engineering, V ol. 12, ed. by J.G. Webster (Wiley, New York 1999) p. 64

    Google Scholar 

  10. P.A. Rikvold, M.A. Novotny, M. Kolesik, H.L. Richards: ‘Nucleation Theory of Magnetization Reversal in Nanoscale Ferromagnets’. In: Dynamical Phenomena in Unconventional Magnetic Systems, ed. by A.T. Skjeltorp, D. Sherrington (Kluwer, Dordrecht 1998) p. 307, and references therein

    Google Scholar 

  11. U. Nowak: ‘Thermally Activated Reversal in Magnetic Nanostructures’. In: Annual Review of Computational Physics IX, ed. by D. Stauffer (World Scientific, Singapore 2001) p. 105

    Chapter  Google Scholar 

  12. G. Brown, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 64, in press (2001), e-print cond-mat/0101477

    Google Scholar 

  13. J.J.M. Ruigrok, R. Coehorn, S.R. Cumpson, H.W. Kestern: J. Appl. Phys. 87, 5398 (2000)

    Article  ADS  Google Scholar 

  14. D. Weller, M.F. Doerner: Ann. Rev. Mater. Sci. 30, 611 (2000)

    Article  ADS  Google Scholar 

  15. T. Chang, J.-G. Zhu, J.H. Judy: J. Appl. Phys. 73, 6716 (1993).

    Article  ADS  Google Scholar 

  16. H.L. Richards, S.W. Sides, M.A. Novotny, P.A. Rikvold: J. Magn. Magn. Mater. 150, 37 (1995)

    Article  ADS  Google Scholar 

  17. P.A. Rikvold, B.M. Gorman: ‘Recent Results on the Decay of Metastable Phases’. In: Annual Reviews of Computational Physics I, ed. by D. Stauffer (World Scientific, Singapore 1994) p. 149, and references therein

    Google Scholar 

  18. L. Néel: Ann. Géophys. 5, 99 (1949)

    Google Scholar 

  19. W.F. Brown: J. Appl. Phys. 30, 130S (1959)

    Article  Google Scholar 

  20. W.F. Brown: Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

  21. M. Kolesik, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 56, 11790 (1997)

    Article  ADS  Google Scholar 

  22. M. Kolesik, M.A. Novotny, P.A. Rikvold: Mater. Res. Soc. Conf. Proc. Ser. 492, 313 (1998)

    Google Scholar 

  23. P.A. Rikvold, M. Kolesik: J. Stat. Phys. 100, 377 (2000)

    Article  MATH  Google Scholar 

  24. H.J. Hug et al.: J. Appl. Phys. 79, 5609 (1996)

    Article  ADS  Google Scholar 

  25. R.H. Koch et al.: Phys. Rev. Lett. 84, 5419 (2000).

    Article  ADS  Google Scholar 

  26. H.L. Richards, M.A. Novotny, P.A. Rikvold: Phys. Rev. B 54, 4113 (1996)

    Article  ADS  Google Scholar 

  27. H.L. Richards et al.: Phys. Rev. B 55, 11521 (1997)

    Article  ADS  Google Scholar 

  28. H. Tomita, S. Miyashita: Phys. Rev. B 46, 8886 (1992)

    Article  ADS  Google Scholar 

  29. P.A. Rikvold, H. Tomita, S. Miyashita, S.W. Sides: Phys. Rev. E 49, 5080 (1994)

    Article  ADS  Google Scholar 

  30. J.S. Langer: Ann. Phys. (N.Y.) 41, 108 (1967)

    Article  ADS  Google Scholar 

  31. J.S. Langer: Ann. Phys. (N.Y.) 54, 258 (1969)

    Article  ADS  Google Scholar 

  32. N.J. Günther, D.A. Nicole, D.J. Wallace: J. Phys. A 13, 1755 (1980)

    Article  ADS  Google Scholar 

  33. M. Kolesik, M.A. Novotny, P.A. Rikvold: Phys. Rev. Lett. 80, 3384 (1998)

    Article  ADS  Google Scholar 

  34. M. Kolesik, M.A. Novotny, P.A. Rikvold, D.M. Townsley: ‘Projected Dynamics for Metastable Decay in Ising Models’. In: Computer Simulation Studies in Condensed Matter Physics X, ed. by D.P. Landau, K.K. Mon, H.-B. Schüttler (Springer, Berlin 1998), p. 246

    Google Scholar 

  35. M.A. Novotny, M. Kolesik, P.A. Rikvold: Computer Phys. Commun. 121–122, 330 (1999)

    Article  Google Scholar 

  36. R.H. Schonmann: Commun. Math. Phys. 161, 1 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. A.N. Kolmogorov: Bull. Acad. Sci. USSR, Phys. Ser. 1, 355 (1937)

    Google Scholar 

  38. W.A. Johnson, R.F. Mehl: Trans. Am. Inst. Mining and Metallurgical Engineers 135, 416 (1939)

    Google Scholar 

  39. M. Avrami: J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941)

    Article  ADS  Google Scholar 

  40. J. Lee, M.A. Novotny, P.A. Rikvold: Phys. Rev. E 52, 356 (1995)

    Article  ADS  Google Scholar 

  41. N. Metropolis et al.: J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  42. R. J. Glauber: J. Math. Phys. 4, 294 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. M.A. Novotny: Phys. Rev. Lett. 74, 1 (1995); erratum 75, 1424 (1995)

    Article  ADS  Google Scholar 

  44. A.B. Bortz, M.H. Kalos, J.L. Lebowitz: J. Comput. Phys. 17, 10 (1975)

    Article  ADS  Google Scholar 

  45. G.H. Gilmer: J. Crystal Growth 35, 15 (1976)

    Article  ADS  Google Scholar 

  46. M.A. Novotny: Computers in Physics 9, 46 (1995)

    Article  ADS  Google Scholar 

  47. D.A. Garanin: Phys. Rev. B 55, 3050 (1997)

    Article  ADS  Google Scholar 

  48. W.F. Brown: Micromagnetics (Wiley, New York 1963)

    Google Scholar 

  49. A. Aharoni: Introduction to the Theory of Ferromagnetism (Clarendon, Oxford 1996)

    Google Scholar 

  50. L. Greengard, V. Rohklin: J. Comput. Phys. 73, 325 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. L. Greengard: Science 265, 909 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  52. D. Hinzke, U. Nowak: Comput. Phys. Commun. 122, 334 (1999)

    Article  ADS  Google Scholar 

  53. U. Nowak, D. Hinzke: J. Appl. Phys. 85, 4337 (1999)

    Article  ADS  Google Scholar 

  54. E. D. Boerner, H. N. Bertram: IEEE Trans. Magn. 33, 3052 (1997)

    Article  ADS  Google Scholar 

  55. J. A. Ewing: Proc. R. Soc. London 33, 21 (1881)

    Article  Google Scholar 

  56. S.W. Sides, P.A. Rikvold, M.A. Novotny: Phys. Rev. E 59, 2710 (1999)

    Article  ADS  Google Scholar 

  57. Y.-L. He, G.-C. Wang: Phys. Rev. Lett. 70, 2336 (1993)

    Article  ADS  Google Scholar 

  58. Q. Jiang, H.-N. Yang, G.-C. Wang: Phys. Rev. B 52, 14911 (1995)

    Article  ADS  Google Scholar 

  59. J.H. Suen, J. L. Erskine: Phys. Rev. Lett. 78, 3567 (1997)

    Article  ADS  Google Scholar 

  60. J.H. Suen, M.H. Lee, G. Teeter, J. L. Erskine: Phys. Rev. B 59, 4249 (1999)

    Article  ADS  Google Scholar 

  61. S.W. Sides, P.A. Rikvold, M. A. Novotny: J. Appl. Phys. 83, 6494 (1998)

    Article  ADS  Google Scholar 

  62. S.W. Sides, P.A. Rikvold, M.A. Novotny: Phys. Rev. E 57, 6512 (1998)

    Article  ADS  Google Scholar 

  63. T. Tomé, M.J. de Oliveira: Phys. Rev. A 41, 4251 (1990)

    Article  ADS  Google Scholar 

  64. J.F.F. Mendes, E.J.S. Lage: J. Stat. Phys. 64, 653 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. G. Korniss, C.J. White, P.A. Rikvold, M.A. Novotny: Phys. Rev. E 63, 016120 (2001)

    Article  ADS  Google Scholar 

  66. W.S. Lo, R.A. Pelcovits: Phys. Rev. A 42, 7471 (1990)

    Article  ADS  Google Scholar 

  67. M. Acharyya, B.K. Chakrabarti: ‘Ising System in Oscillating Field: Hysteretic Response’. In: Annual Reviews of Computational Physics I, ed. by D. Stauffer (World Scientific, Singapore 1994) p. 107

    Google Scholar 

  68. M. Acharyya, B. Chakrabarti: Phys. Rev. B 52, 6550 (1995)

    Article  ADS  Google Scholar 

  69. M. Acharyya: Phys. Rev. E 56, 1234 (1997)

    Article  ADS  Google Scholar 

  70. M. Acharyya: Phys. Rev. E 56, 2407 (1997)

    Article  ADS  Google Scholar 

  71. M. Acharyya: Phys. Rev. E 58, 179 (1998)

    Article  ADS  Google Scholar 

  72. B. Chakrabarti, M. Acharyya: Rev. Mod. Phys. 71, 847 (1999)

    Article  ADS  Google Scholar 

  73. G. M. Buendía, E. Machado: Phys. Rev. E 58, 1260 (1998)

    Article  ADS  Google Scholar 

  74. G. M. Buendía, E. Machado: Phys. Rev. B 61, 14686 (2000)

    Article  ADS  Google Scholar 

  75. S.W. Sides, P.A. Rikvold, M.A. Novotny: Phys. Rev. Lett. 81, 834 (1998)

    Article  ADS  Google Scholar 

  76. M. Zimmer: Phys. Rev. E 47, 3950 (1993)

    Article  ADS  Google Scholar 

  77. Q. Jiang, H.-N. Yang, G.-C. Wang: J. Appl. Phys. 79, 5122 (1996)

    Article  ADS  Google Scholar 

  78. G. Grinstein, C. Jayaprakash, Y. He: Phys. Rev. Lett. 55, 2527 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  79. H. Fujisaka, H. Tutu, P.A. Rikvold: Phys. Rev. E 63, 036109 (2001); erratum 63, 059903 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rikvold, P.A., Brown, G., Mitchell, S.J., Novotny, M.A. (2002). Dynamics of Magnetization Reversal in Models of Magnetic Nanoparticles and Ultrathin Films. In: Shi, D., Aktaş, B., Pust, L., Mikailov, F. (eds) Nanostructured Magnetic Materials and Their Applications. Lecture Notes in Physics, vol 593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36872-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-36872-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44102-1

  • Online ISBN: 978-3-540-36872-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics