Skip to main content

Chemical Ionization

  • Chapter
Mass Spectrometry

Abstract

Mass spectrometrists have ever been searching for ionization methods softer than EI, because molecular weight determination is of key importance for structure elucidation. Chemical ionization (CI) is the first of the soft ionization methods we are going to discuss. Historically, field ionization (FI, Chap. 8) has been applied some years earlier, and thus CI can be regarded as the second soft ionization method introduced to analytical mass spectrometry. Several aspects of CI possess rather close similarity to EI making its discussion next to EI more convenient. CI goes back to experiments of Talrose in the early 1950s [1] and was developed to an analytically useful technique by Munson and Field in the mid-1960s. [2–5] Since then, the basic concept of CI has been extended and applied in numerous different ways, meanwhile providing experimental conditions for a wide diversity of analytical tasks. [5, 6] The monograph by Harrison is especially recommended for further reading. [7]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. Talrose, V.L.; Ljubimova, A.K. Secondary Processes in the Ion Source of a Mass Spectrometer (Reprint From 1952). J. Mass Spectrom. 1998, 33, 502–504.

    Google Scholar 

  2. Munson, M.S.B.; Field, F.H. Reactions of Gaseous Ions. XV. Methane + 1% Ethane and Methane +1% Propane. J. Am. Chem. Soc. 1965, 87, 3294–3299.

    Article  CAS  Google Scholar 

  3. Munson, M.S.B. Proton Affinities and the Methyl Inductive Effect. J. Am. Chem. Soc. 1965, 87, 2332–2336.

    Article  CAS  Google Scholar 

  4. Munson, M.S.B.; Field, F.H. Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc. 1966, 88, 2621–2630.

    Article  CAS  Google Scholar 

  5. Munson, M.S.B. Development of Chemical Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2000, 200, 243–251.

    Article  CAS  Google Scholar 

  6. Richter, W.J.; Schwarz, H. Chemical Ionization — a Highly Important Productive Mass Spectrometric Analysis Method. Angew. Chem. 1978, 90, 449–469.

    Article  CAS  Google Scholar 

  7. Harrison, A.G. Chemical Ionization Mass Spectrometry; 2nd ed.; CRC Press: Boca Raton, 1992.

    Google Scholar 

  8. Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion. Proc. 1995, 742, 211–240.

    Google Scholar 

  9. Griffith, K.S.; Gellene, G.I. A Simple Method for Estimating Effective Ion Source Residence Time. J. Am. Soc. Mass Spectrom. 1993 , 4, 787–791.

    Article  CAS  Google Scholar 

  10. Field, F.H.; Munson, M.S.B. Reactions of Gaseous Ions. XIV. Mass Spectrometric Studies of Methane at Pressures to 2 Torr. J. Am. Chem. Soc. 1965, 87, 3289–3294.

    Article  CAS  Google Scholar 

  11. Hunt, D.F.; Ryan, J.F.I. Chemical Ionization Mass Spectrometry Studies. I. Identification of Alcohols. Tetrahedron Lett. 1971, 47, 4535–4538.

    Article  Google Scholar 

  12. Herman, J.A.; Harrison, A.G. Effect of Reaction Exothermicity on the Proton Transfer Chemical Ionization Mass Spectra of Isomeric C5 and C6 Alkanols. Can. J. Chem. 1981, 59, 2125–2132.

    Article  CAS  Google Scholar 

  13. Beggs, D.; Vestal, M.L.; Fales, H.M.; Milne, G.W.A. Chemical Ionization Mass Spectrometer Source. Rev. Sci. Inst. 1971, 42, 1578–1584.

    Article  CAS  Google Scholar 

  14. Schröder, E. Massenspektrometrie — Begriffe und Definitionen; Springer-Verlag: Heidelberg, 1991.

    Book  Google Scholar 

  15. Price, P. Standard Definitions of Terms Relating to Mass Spectrometry. A Report From the Committee on Measurements and Standards of the ASMS. J. Am. Chem. Soc. Mass Spectrom. 1991, 2, 336–348.

    Article  CAS  Google Scholar 

  16. Heck, A.J.R.; de Koning, L.J.; Nibbering, N.M.M. Structure of Protonated Methane. J. Am. Soc. Mass Spectrom. 1991, 2, 454–458.

    Article  Google Scholar 

  17. Mackay, G.I.; Schiff, H.I.; Bohme, K.D. A Room-Temperature Study of the Kinetics and Energetics for the Protonation of Ethane. Can. J. Chem. 1981, 59, 1771–1778.

    Article  CAS  Google Scholar 

  18. Fisher, J.J.; Koyanagi, G.K.; McMahon, T.B. The C2H7 + Potential Energy Surface: a Fourier Transform Ion Cyclotron Resonance Investigation of the Reaction of Methyl Cation with Methane. Int. J. Mass Spectrom. 2000, 195/196, 491–505.

    Google Scholar 

  19. Drabner, G.; Poppe, A.; Budzikiewicz, H. The Composition of the Methane Plasma. Int. J. Mass Spectrom. Ion Proc. 1990, 97, 1–33.

    Article  CAS  Google Scholar 

  20. Heck, A.J.R.; de Koning, L.J.; Nibbering, N.M.M. On the Structure and Unimolecular Chemistry of Protonated Halomethanes. Int. J. Mass Spectrom. Ion Proc. 1991, 109, 209–225.

    Article  CAS  Google Scholar 

  21. Herman, J.A.; Harrison, A.G. Effect of Protonation Exothermicity on the CI Mass Spectra of Some Alkylbenzenes. Org. Mass Spectrom. 1981, 76, 423–427.

    Article  Google Scholar 

  22. Munson, M.S.B.; Field, F.H. Reactions of Gaseous Ions. XVI. Effects of Additives on Ionic Reactions in Methane. J. Am. Chem. Soc. 1965, 87, 4242–4247.

    Article  CAS  Google Scholar 

  23. Kuck, D.; Petersen, A.; Fastabend, U. Mobile Protons in Large Gaseous Alkylbenzenium Ions. The 21-Proton Equilibration in Protonated Tetrabenzylmethane and Related “Proton Dances”. Int. J. Mass Spectrom. 1998, 179/180, 129–146.

    Google Scholar 

  24. Kuck, D. Half a Century of Scrambling in Organic Ions: Complete, Incomplete, Progressive and Composite Atom Interchange. Int. J. Mass Spectrom. 2002, 213, 101–144.

    Article  CAS  Google Scholar 

  25. Fales, H.M.; Milne, G.W.A.; Axenrod, T. Identification of Barbiturates by CI-MS. Anal. Chem. 1970, 42, 1432–1435.

    Article  CAS  Google Scholar 

  26. Milne, G.W.A.; Axenrod, T.; Fales, H.M. CI-MS of Complex Molecules. IV. Amino Acids. J. Am. Chem. Soc. 1970, 92, 5170–5175.

    Article  CAS  Google Scholar 

  27. Fales, H.M.; Milne, G.W.A. CI-MS of Complex Molecules. II. Alkaloids. J. Am. Chem. Soc. 1970, 92, 1590–1597.

    Article  CAS  Google Scholar 

  28. Herman, J.A.; Harrison, A.G. Energetics and Structural Effects in the Fragmentation of Protonated Esters in the Gas Phase. Can. J. Chem. 1981, 59, 2133–2145.

    Article  CAS  Google Scholar 

  29. Milne, G.W.A.; Fales, H.M.; Axenrod, T. Identification of Dangerous Drugs by Isobutane CI-MS. Anal. Chem. 1970, 42, 1815–1820.

    Article  Google Scholar 

  30. Takeda, N.; Harada, K.-I.; Suzuki, M.; Tatematsu, A.; Kubodera, T. Application of Emitter CI-MS to Structural Characterization of Aminoglycoside Antibiotics. Org. Mass Spectrom. 1982, 17, 247–252.

    Article  CAS  Google Scholar 

  31. McGuire, J.M.; Munson, B. Comparison of Isopentane and Isobutane as Chemical Ionization Reagent Gases. Anal. Chem. 1985, 57, 680–683.

    Article  CAS  Google Scholar 

  32. McCamish, M.; Allan, A.R.; Roboz, J. Poly(Dimethylsiloxane) As Mass Reference for Accurate Mass Determination in Isobutane CI-MS. Rapid Commun. Mass Spectrom. 1987, 1, 124–125.

    Article  CAS  Google Scholar 

  33. Maeder, H.; Gunzelmann, K.H. Straight-Chain Alkanes As Reference Compounds for Accurate Mass Determination in Isobutane CI-MS. Rapid Commun. Mass Spectrom. 1988, 2, 199–200.

    Article  CAS  Google Scholar 

  34. Hunt, D.F.; McEwen, C.N.; Upham, R.A. CI-MS II. Differentiation of Primary, Secondary, and Tertiary Amines. Tetrahedron Lett. 1971, 47, 4539–4542.

    Article  Google Scholar 

  35. Keough, T.; DeStefano, A.J. Factors Affecting Reactivity in Ammonia CI-MS. Org. Mass Spectrom. 1981, 16, 527–533.

    Article  CAS  Google Scholar 

  36. Hancock, R.A.; Hodges, M.G. A Simple Kinetic Method for Determining Ion-Source Pressures for Ammonia CI-MS. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 329–332.

    Article  CAS  Google Scholar 

  37. Rudewicz, P.; Munson, B. Effect of Ammonia Partial Pressure on the Sensitivities for Oxygenated Compounds in Ammonia CI-MS. Anal. Chem. 1986, 58, 2903–2907.

    Article  CAS  Google Scholar 

  38. Lawrence, D.L. Accurate Mass Measurement of Positive Ions Produced by Ammonia Chemical Ionization. Rapid Commun. Mass Spectrom. 1990, 4, 546–549.

    Article  CAS  Google Scholar 

  39. Busker, E.; Budzikiewicz, H. Studies in CI-MS. 2. Isobutane and Nitric Oxide Spectra of Alkynes. Org. Mass Spectrom. 1979, 14, 222–226.

    Article  CAS  Google Scholar 

  40. Brinded, K.A.; Tiller, P.R.; Lane, S.J. Triton X-100 As a Reference Compound for Ammonia High-Resolution CI-MS and as a Tuning and Calibration Compound for Thermospray. Rapid Commun. Mass Spectrom. 1993, 7, 1059–1061.

    Article  CAS  Google Scholar 

  41. Wu, H.-F.; Lin, Y.-P. Determination of the Sensitivity of an External Source Ion Trap Tandem Mass Spectrometer Using Dimethyl Ether Chemical Ionization. J. Mass Spectrom. 1999, 34, 1283–1285.

    Article  CAS  Google Scholar 

  42. Barry, R.; Munson, B. Selective Reagents in CI-MS: Diisopropyl Ether. Anal. Chem. 1987, 59, 466–471.

    Article  CAS  Google Scholar 

  43. Allgood, C; Lin, Y.; Ma, Y.C.; Munson, B. Benzene as a Selective Chemical Ionization Reagent Gas. Org. Mass Spectrom. 1990, 25, 497–502.

    Article  CAS  Google Scholar 

  44. Srinivas, R.; Vairamani, M.; Mathews, CK. Gase-Phase Halo Alkylation of Côo-Fullerene by Ion-Molecule Reaction Under Chemical Ionization. J. Am. Soc. Mass Spectrom. 1993, 4, 894–897.

    Article  CAS  Google Scholar 

  45. Fordham, P.J.; Chamot-Rooke, J.; Guidice, E.; Tortajada, J.; Morizur, J.-P. Analysis of Alkenes by Copper Ion Chemical Ionization Gas Chromatography/Mass Spectrometry and Gas Chromatography/Tandem Mass Spectrometry. J. Mass Spectrom. 1999, 34, 1007–1017.

    Article  CAS  Google Scholar 

  46. Peake, D.A.; Gross, M.L. Iron(I) Chemical Ionization and Tandem Mass Spectrometry for Locating Double Bonds. Anal. Chem. 1985, 57, 115–120.

    Article  CAS  Google Scholar 

  47. Budzikiewicz, H.; Blech, S.; Schneider, B. Studies in Chemical Ionization. XXVI. Investigation of Aliphatic Dienes by Chemical Ionization With Nitric Oxide. Org. Mass Spectrom. 1991, 26, 1057–1060.

    Article  CAS  Google Scholar 

  48. Schneider, B.; Budzikiewicz, H. A Facile Method for the Localization of a Double Bond in Aliphatic Compounds. Rapid Commun. Mass Spectrom. 1990, 4, 550–551.

    Article  CAS  Google Scholar 

  49. Hsu, CS.; Qian, K. Carbon Disulfide CE-MS as a Low-Energy Ionization Technique for Hydrocarbon Characterization. Anal. Chem. 1993, 65, 767–771.

    Article  CAS  Google Scholar 

  50. Einolf, N.; Munson, B. High-Pressure CE-MS. Int. J. Mass Spectrom. Ion Phvs. 1972, 9, 141–160.

    Article  CAS  Google Scholar 

  51. Sieck, L.W. Determination of Molecular Weight Distribution of Aromatic Components in Petroleum Products by CI-MS with Chlorobenzene As Reagent Gas. Anal. Chem. 1983, 55, 38–41.

    Article  CAS  Google Scholar 

  52. Allgood, C; Ma, Y.C.; Munson, B. Quantitation Using Benzene in Gas Chromatography/CI-MS. Anal. Chem. 1991, 63, 721–725.

    Article  CAS  Google Scholar 

  53. Subba Rao, S.C.; Fenselau, C. Evaluation of Benzene As a Charge Exchange Reagent. Anal. Chem. 1978, 50, 511–515.

    Article  CAS  Google Scholar 

  54. Li, Y.H.; Herman, J.A.; Harrison. A.G. CE Mass Spectra of Some C5H10 Isomers. Can. J. Chem. 1981, 59, 1753–1759.

    Article  CAS  Google Scholar 

  55. Abbatt, J.A.; Harrison, A.G. Low-Energy Mass Spectra of Some Aliphatic Ketones. Org. Mass Spectrom. 1986, 21, 557–563.

    Article  CAS  Google Scholar 

  56. Herman, J.A.; Li, Y.-H.; Harrison, A.G. Energy Dependence of the Fragmentation of Some Isomeric C6H12 +’ Ions. Org. Mass Spectrom. 1982, 17, 143–150.

    Article  CAS  Google Scholar 

  57. Chai, R.; Harrison, A.G. Location of Double Bonds by CI-MS. Anal. Chem. 1981, 53, 34–37.

    Article  CAS  Google Scholar 

  58. Keough, T.; Mihelich, E.D.; Eickhoff, D.J. Differentiation of Monoepoxide Isomers of Polyunsaturated Fatty Acids and Fatty Acid Esters by Low-Energy CE-MS. Anal. Chem. 1984, 56, 1849–1852.

    Article  CAS  Google Scholar 

  59. Polley, C.W., Jr.; Munson, B. Nitrous Oxide As Reagent Gas for Positive Ion Chemical Ionization Mass Spectrometry. Anal. Chem. 1983, 55, 754–757.

    Article  CAS  Google Scholar 

  60. Harrison, A.G.; Lin, M.S. Stereochemical Applications of Mass Spectrometry. 3. Energy Dependence of the Fragmentation of Stereoisomeric Methylcyclohexanols. Org. Mass Spectrom. 1984, 19, 67–71.

    Article  CAS  Google Scholar 

  61. Hsu, CS.; Cooks, R.G. CE-MS at High Energy. Org. Mass Spectrom. 1976, 11, 975–983.

    Article  CAS  Google Scholar 

  62. Roussis, S. Exhaustive Determination of Hydrocarbon Compound Type Distributions by High Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 1031–1051.

    Article  CAS  Google Scholar 

  63. Hunt, D.F.; Stafford, G.C., Jr.; Crow, F.W. Pulsed Positive- and Negative-Ion CI-MS. Anal. Chem. 1976, 45, 2098–2104.

    Article  Google Scholar 

  64. Dougherty, R.C; Weisenberger, C.R. Negative Ion Mass Spectra of Benzene, Naphthalene, and Anthracene. A New Technique for Obtaining Relatively Intense and Reproducible Negative Ion Mass Spectra. J. Am. Chem. Soc. 1968, 90, 6570–6571.

    Article  CAS  Google Scholar 

  65. Dillard, J.G. Negative Ion Mass Spectrometry. Chem. Rev. 1973, 73, 589–644.

    Article  CAS  Google Scholar 

  66. Bouma, W.J.; Jennings, K.R. Negative CI-MS of Explosives. Org. Mass Spectrom. 1981, 16, 330–335.

    Google Scholar 

  67. Budzikiewicz, H. Studies in Negative Ion Mass Spectrometry. XI. Negative Chemical Ionization (NCI) of Organic Compounds. Mass Spectrom. Rev. 1986, 5, 345–380.

    Article  CAS  Google Scholar 

  68. Hunt, D.F.; Crow, F.W. Electron Capture Negative-Ion CI-MS. Anal. Chem. 1978, 50, 1781–1784.

    Article  CAS  Google Scholar 

  69. Ong, V.S.; Hites, R.A. Electron Capture Mass Spectrometry of Organic Environmental Contaminants. Mass Spectrom. Rev. 1994, 13, 259–283.

    Article  CAS  Google Scholar 

  70. Oehme, M. Quantification of fg-pg Amounts by Electron Capture Negative Ion Mass Spectrometry — Parameter Optimization and Practical Advice. Fresenius J. Anal. Chem. 1994, 350, 544–554.

    Article  CAS  Google Scholar 

  71. Bartels, M.J. Quantitation of the Tetra-chloroethylene Metabolite TV-Acetyl-S-(trichlorovinyl)cysteine in Rat Urine Via Negative Ion Chemical Ionization Gas Chromatography/Tandem Mass Spectrometry. Biol. Mass Spectrom. 1994, 23, 689–694.

    Article  CAS  Google Scholar 

  72. Fowler, B. The Determination of Toxaphene in Environmental Samples by Negative Ion Electron Capture (EC) HR-MS. Chemosphere 2000, 41, 487–492.

    Article  CAS  Google Scholar 

  73. von Ardenne, M.; Steinfelder, K.; Tümmler, R. Elektronenanlagerungs-Massenspektrographie Organischer Substanzen; Springer-Verlag: Heidelberg, 1971.

    Book  Google Scholar 

  74. Laramée, J.A.; Arbogast, B.C.; Deinzer, M.L. EC Negative Ion CI-MS of 1, 2, 3, 4-Tetrachlorodibenzo-p-dioxin. Anal. Chem. 1986, 55, 2907–2912.

    Article  Google Scholar 

  75. Budzikiewicz, H. Mass Spectrometry of Negative Ions. 3. Mass Spectrometry of Negative Organic Ions. Angew. Chem. 1981, 93, 635–649.

    Article  CAS  Google Scholar 

  76. Bowie, J.H. The Formation and Fragmentation of Negative Ions Derived From Organic Molecules. Mass Spectrom. Rev. 1984, 3, 161–207.

    Article  CAS  Google Scholar 

  77. Stemmler, E.A.; Hites, R.A. The Fragmentation of Negative Ions Generated by EC Negative Ion Mass Spectrometry: a Review With New Data. Biomed. Environ. Mass Spectrom. 1988, 77, 311–328.

    Article  Google Scholar 

  78. Giese, R.W. Detection of DNA Adducts by Electron Capture Mass Spectrometry. Chem. Res. Toxicol. 1997, 10, 255–270.

    Article  CAS  Google Scholar 

  79. Laramée, J.A.; Mazurkiewicz, P.; Berkout, V.; Deinzer, M.L. Electron Monochromator-Mass Spectrometer for Negative Ion Analysis of Electronegative Compounds. Mass Spectrom. Rev. 1996, 75, 15–42.

    Article  Google Scholar 

  80. NIST, NIST Chemistry Webbook. http://webbook.nist. gov/2002.

    Google Scholar 

  81. Williamson, D.H.; Knighton, W.B.; Grimsrud, E.P. Effect of Buffer Gas Alterations on the Thermal Electron Attachment and Detachment Reactions of Azulene by Pulsed High Pressure Mass Spectrometry. Int. J. Mass Spectrom. 2000, 795/796, 481–489.

    Google Scholar 

  82. Carette, M.; Zerega, Y.; Perrier, P.; Andre, J.; March, R.E. Rydberg EC-MS of 1, 2, 3, 4-Tetrachlorodibenzo-p-dioxin. Eur. Mass Spectrom. 2000, 6, 405–408.

    Article  CAS  Google Scholar 

  83. Wei, J.; Liu, S.; Fedoreyev, S.A.; Vionov, V.G. A Study of Resonance Electron Capture Ionization on a Quadrupole Tandem Mass Spectrometer. Rapid Commun. Mass Spectrom. 2000, 14, 1689–1694.

    Article  CAS  Google Scholar 

  84. Zerega, Y.; Carette, M.; Perrier, P.; Andre, J. Rydberg EC-MS of Organic Pollutants. Organohal. Comp. 2002, 55, 151–154.

    CAS  Google Scholar 

  85. Yinon, J. Mass Spectrometry of Explosives: Nitro Compounds, Nitrate Esters, and Nitramines. Mass Spectrom. Rev. 1982, 7, 257–307.

    Article  Google Scholar 

  86. Cappiello, A.; Famiglini, G.; Lombardozzi, A.; Massari, A.; Vadalà, G.G. EC Ionization of Explosives With a Microflow Rate Particle Beam Interface. J. Am. Soc. Mass Spectrom. 1996, 7, 753–758.

    CAS  Google Scholar 

  87. Knighton, W.B.; Grimsrud, E.P. High-Pressure EC-MS. Mass Spectrom. Rev. 1995, 14, 327–343.

    Article  CAS  Google Scholar 

  88. Aubert, C; Rontani, J.-F. Perfluoroalkyl Ketones: Novel Derivatization Products for the Sensitive Determination of Fatty Acids by Gas GC-MS in EI and NICI Modes. Rapid Commun. Mass Spectrom. 2000, 14, 960–966.

    Article  CAS  Google Scholar 

  89. Cotter, R.J. Mass Spectrometry of Nonvolatile Compounds by Desorption From Extended Probes. Anal. Chem. 1980, 52, 1589A–1602A.

    Article  CAS  Google Scholar 

  90. Kurlansik, L.; Williams, T.J.; Strong, J.M.; Anderson, L.W.; Campana, J.E. DCI-MS of Synthetic Porphyrins. Biomed. Mass Spectrom. 1984, 77, 475–481.

    Article  Google Scholar 

  91. Helleur, R.J.; Thibault, P. Optimization of Pyrolysis-Desorption CI-MS and Tandem Mass Spectrometry of Polysaccharides. Can. J. Chem. 1994, 72, 345–351.

    Article  CAS  Google Scholar 

  92. Vincenti, M. The Renaissance of DCI-MS: Characterization of Large Involatile Molecules and Nonpolar Polymers. Int. J. Mass Spectrom. 2001, 272, 505–518.

    Google Scholar 

  93. Beuhler, R.J.; Flanigan, E.; Greene, L.J.; Friedman, L. Proton Transfer MS of Peptides. Rapid Heating Technique for Underivatized Peptides Containing Arginine. J. Am. Chem. Soc. 1974, 96, 3990–3999.

    Article  CAS  Google Scholar 

  94. Cotter, R.J. Laser Desorption CI-MS. Anal. Chem. 1980, 52, 1767–1770.

    Article  CAS  Google Scholar 

  95. Hunt, D.F.; Shabanowitz, J.; Botz, F.K. CI-MS of Salts and Thermally Labile Organic s With Field Desorption Emitters as Solids Probes. Anal. Chem. 1977, 49, 1160–1163.

    Article  CAS  Google Scholar 

  96. Cullen, W.R.; Eigendorf, G.K.; Pergantis, S.A. DCI-MS of Arsenic Compounds Present in the Marine and Terrestrial Environment. Rapid Commun. Mass Spectrom. 1993, 7, 33–36.

    Article  CAS  Google Scholar 

  97. Abate, R.; Garozzo, D.; Rapisardi, R.; Ballistreri, A.; Montaudo, G. Sequence Distribution of ß-Hydroxyalkanoate Units in Bacterial Copolyesters Determined by-DCI-MS. Rapid Commun. Mass Spectrom. 1992, 6, 702–706.

    Article  CAS  Google Scholar 

  98. Juo, CG.; Chen, S.W.; Her, G.R. Mass Spectrometric Analysis of Additives in Polymer Extracts by DCI and CID with B/E Linked Scanning. Anal. Chim. Acta 1995, 377, 153–164.

    Article  Google Scholar 

  99. Chen, G.; Cooks, R.G.; Jha, S.K.; Green, M.M. Microstructure of Alkoxy and Alkyl Substituted Isocyanate Copolymers Determined by DCI-MS. Anal. Chim. Acta 1997, 356, 149–154.

    Article  CAS  Google Scholar 

  100. Pergantis, S.A.; Emond, C.A.; Madilao, L.L.; Eigendorf, G.K. Accurate Mass Measurements of Positive Ions in the DCI Mode. Org. Mass Spectrom. 1994, 29, 439–444.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2004). Chemical Ionization. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36756-X_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36756-X_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07388-5

  • Online ISBN: 978-3-540-36756-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics