Skip to main content

Hyphenated Methods

  • Chapter
Mass Spectrometry
  • 2474 Accesses

Abstract

The analysis of complex mixtures particularly requires the combination of both separation techniques and mass spectrometry. [1–3] The first step in this direction was made by gas chromatography-mass spectrometry coupling (GC-MS), [4] and soon, GC-MS became a routine method. [5–7] The desire to realize a liquid chromatography-mass spectrometry coupling (LC-MS) [8, 9] was the driving force for the development of API methods (Chap. 11). [10–13] Coupling of other liquid phase separation techniques to mass spectrometry followed: capillary zone electrophoresis-mass spectrometry (CZE-MS), [14–18] and supercritical fluid chromatography-mass spectrometry (SFC-MS). [19–23] Whatever the separation technique, it adds an additional dimension to the analytical measurement. The hyphen used to indicate the coupling of a separation technique to mass spectrometry led to the term hyphenated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. Williams, J.D.; Burinsky, D.J. Mass Spec-trometric Analysis of Complex Mixtures Then and Now: the Impact of Linking Liquid Chromatography and Mass Spectrometry. Int. J. Mass Spectrom. 2001, 212, 111–133.

    Article  CAS  Google Scholar 

  2. McLafferty, F.W. Tandem MS Analysis of Complex Biological Mixtures. Int. J. Mass Spectrom. 2001, 212, 81–87.

    Article  CAS  Google Scholar 

  3. Kondrat, R.W. Mixture Analysis by Mass Spectrometry: Now’s the Time. Int. J. Mass Spectrom. 2001, 212, 89–95.

    Article  CAS  Google Scholar 

  4. Gohlke, R.S.; McLafferty, F.W. Early Gas Chromatography/Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 1993, 4, 367–371.

    Article  CAS  Google Scholar 

  5. Message, G.M. Practical Aspects of Gas Chromatography/Mass Spectrometry; John Wiley & Sons: New York, 1984.

    Google Scholar 

  6. Hübschmann, H.-J. Handbook of GC/MS: Fundamentals and Applications; Wiley-VCH: Weinheim, 2001.

    Book  Google Scholar 

  7. Budde, W.L. Analytical Mass Spectrometry; ACS and Oxford University Press: Washington. D.C. and Oxford, 2001.

    Google Scholar 

  8. Current Practice of Liquid Chromatogra-phy-Mass Spectrometry; Niessen, W.M.A.; Voyksner, R.D., editors; Elsevier: Amsterdam, 1998.

    Google Scholar 

  9. Ardrey, R.E. Liquid Chromatography -Mass Spectrometry — An Introduction; John Wiley & Sons: Chichester, 2003.

    Book  Google Scholar 

  10. Horning, E.C.; Carroll, D.I.; Dzidic, I.; Haegele, K.D.; Horning, M.G.; Stillwell, R.N. Atmospheric Pressure Ionization (API) MS. Solvent-Mediated Ionization of Samples Introduced in Solution and in a Liquid Chromatograph Effluent Stream. J. Chromatogr. Sci. 1974, 12, 725–729.

    Article  CAS  Google Scholar 

  11. Blakley, C.R.; Vestal, M.L. Thermospray Interface for LC-MS. Anal Chem.1983, 55, 750–754.

    Article  CAS  Google Scholar 

  12. Vestal, M.L. High-Performance Liquid Chromatography-Mass Spectrometry. Sci-ence 1984, 226, 275–281.

    CAS  Google Scholar 

  13. Abian, J. The Coupling of Gas and Liquid Chromatography with Mass Spectrometry. J. Mass Spectrom. 1999, 34, 157–168.

    Article  CAS  Google Scholar 

  14. Smith, R.D.; Barinaga, C.J.; Udseth, H.R. Improved Electrospray Ionization Interface for Capillary Zone Electrophoresis-Mass Spectrometry. Anal Chem. 1988, 60, 1948–1952.

    Article  CAS  Google Scholar 

  15. Schrader, W.; Linscheid, M. Styrene Oxide DNA Adducts: in Vitro Reaction and Sensitive Detection of Modified Oligonucleotides Using Capillary Zone Electrophoresis Interfaced to ESI-MS. Archives of Toxicology 1997, 71, 588–595.

    Article  CAS  Google Scholar 

  16. Tanaka, Y.; Kishimoto, Y.; Otsuga, K.; Terabe, S. Strategy for Selecting Separation Solutions in CE-MS. J. Chromatogr. A 1998, 817, 49–57.

    Article  CAS  Google Scholar 

  17. Siethoff, C.; Nigge, W.; Linscheid, M. Characterization of a CZE/ESI-MS Interface. Anal. Chem. 1998, 70, 1357–1361.

    Article  CAS  Google Scholar 

  18. Hsieh, F.; Baronas, E.; Muir, C.; Martin, S.A. A Novel Nanospray CE/MS Interface. Rapid Commun. Mass Spectrom. 1999, 13, 67–72.

    Article  CAS  Google Scholar 

  19. Smith, R.D.; Felix, W.D.; Fjeldsted, J.C.; Lee, M.L. Capillary Column Supercritical Fluid Chromatography Mass Spectrometry. Anal. Chem. 1982, 54, 1883–1885.

    Article  CAS  Google Scholar 

  20. Arpino, P.J.; Haas, P. Recent Developments in SFC-MS Coupling. J. Chromatogr. A 1995, 703, 479–488.

    Article  CAS  Google Scholar 

  21. Pinkston, I.D.; Chester, T.L. Guidelines for Successful SFC/MS. Anal. Chem. 1995, 67, 650A–656A.

    CAS  Google Scholar 

  22. Sjöberg, P.I.R.; Markides, K.E. New SFC Interface Probe for ESI and APCI-MS. J. Chromatogr. A 1997, 785, 101–110.

    Article  Google Scholar 

  23. Combs, M.T.; Ashraf-Khorassani, M.; Taylor, L.T. Packed SFC-MS: A Review. J. Chromatogr. A 1998, 785, 85–100.

    Google Scholar 

  24. Forensic Applications of Mass Spectrometry; Yinon, J., editor; CRC Press: Boca Raton, 1994.

    Google Scholar 

  25. Hoke, S.H.II.; Morand, K.L.; Greis, K.D.; Baker, T.R.; Harbol, K.L.; Dobson, R.L.M. Transformations in Pharmaceutical Research and Development, Driven by Innovations in Multidimensional Mass Spectrometry-Based Technologies. Int. J. Mass Spectrom. 2001, 212, 135–196.

    Article  CAS  Google Scholar 

  26. Mass Spectrometry in Drug Discovery; Rossi, D.T.; Sinz, M.W., editors; Marcel Dekker: New York, 2002.

    Google Scholar 

  27. Modern Mass Spectrometry; Schalley, C.A., editor; Springer: New York, 2003.

    Google Scholar 

  28. Hites, R.A.; Biemann, K. A Computer-Compatible Digital Data Acquisition System for Fast-Scanning, Single-Focusing Mass Spectrometers. Anal. Chem. 1967, 39, 965–970.

    Article  CAS  Google Scholar 

  29. Hites, R.A.; Biemann, K. Mass Spectrometer-Computer System Particularly Suited for Gas Chromatography of Complex Mixtures. Anal. Chem. 1968, 40, 1217–1221.

    Article  CAS  Google Scholar 

  30. Hites, R.A.; Biemann, K. Computer Evaluation of Continuously Scanned Mass Spectra of Gas Chromatographic Effluents. Anal. Chem. 1970, 42, 855–860.

    Article  CAS  Google Scholar 

  31. Bertholf, R.L. Gas Chromatography and Mass Spectrometry in Clinical Chemistry, in Encyclopedia of Analytical Chemistry, Meyers, R.A., editor; John Wiley & Sons: Chichester, 2000; pp. 1314–1336.

    Google Scholar 

  32. Spies-Martin, D.; Sommerburg, O.; Langhans, C.-D.; Leichsenring, M. Measurement of 4-Hydroxynonenal in Small Volume Blood Plasma Samples: Modification of a GC-MS Method for Clinical Settings. Journal of Chromatography B 2002, 774, 231–239.

    Article  CAS  Google Scholar 

  33. Price, P. Standard Definitions of Terms Relating to Mass Spectrometry. A Report From the Committee on Measurements and Standards of the Amercian Society for Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1991, 2, 336–348.

    Article  CAS  Google Scholar 

  34. Henneberg, D. Combination of Gas Chromatography and Mass Spectrometry for the Analysis of Organic Mixtures. Zeitschrift für Analytische Chemie 1961, 183, 12–23.

    Article  CAS  Google Scholar 

  35. Sweeley, C.C.; Elliot, W.H.; Fries, I.; Ryhage, R. Mass Spectrometric Determination of Unresolved Components in Gas Chromatographic Effluents. Anal. Chem. 1966, 38, 1549–1553.

    Article  CAS  Google Scholar 

  36. Crosby, N.T.; Foreman, J.K.; Palframan, J.F.; Sawyer, R. Estimation of Steam-Volatile N-Nitrosamines in Foods at the 136μg/Kg Level. Nature 1972, 238, 342–343.

    Article  CAS  Google Scholar 

  37. Brooks, C.J.W.; Middleditch, B.S. Uses of Chloromethyldimethylsilyl Ethers As Derivatives for Combined GC-MS of Steroids. Anal. Lett. 1972, 5, 611–618.

    Article  CAS  Google Scholar 

  38. Young, N.D.; Holland, J.F.; Gerber, J.N.; Sweeley, C.C. Selected Ion Monitoring for Multicomponent Analyses by Computer Control of Accelerating Voltage and Magnetic Field. Anal. Chem. 1975, 47, 2373–2376.

    Article  CAS  Google Scholar 

  39. Tanchotikul, U.; Hsieh, T.C.Y. An Improved Method for Quantification of 2-Acetyl-1-Pyrroline, a “Popcorn”-Like Aroma, in Aromatic Rice by High-Resolution GC-MS/SIM.J. Agric. Food Chem. 1991, 39, 944–947.

    Article  CAS  Google Scholar 

  40. Middleditch, B.S.; Desiderio, D.M. Comparison of SIM and Repetitive Scanning During GC-MS. Anal. Chem. 1973, 45, 806–808.

    Article  CAS  Google Scholar 

  41. Millington, D.S.; Buoy, M.E.; Brooks, G.; Harper, M.E.; Griffiths, K. Thin-Layer Chromatography and HR-SIM for the Analysis of C19 Steroids in Human Hyperplastic Prostate Tissue. Biomed. Mass Spectrom. 1975, 2, 219–224.

    Article  CAS  Google Scholar 

  42. Thome, G.C.; Gaskell, S.J.; Payne, P.A. Approaches to the Improvement of Quantitative Precision in SIM: High Resolution Applications. Biomed. Mass Spectrom. 1984, 11, 415–420.

    Article  Google Scholar 

  43. Tong, H.Y.; Monson, S.J.; Gross, M.L.; Huang, L.Q. Monobromopolychlorodi-benzo-p-Dioxins and Dibenzofurans in Municipal Waste Incinerator Fly Ash. Anal. Chem. 1991, 63. 2697–2705.

    Article  CAS  Google Scholar 

  44. Shibata, A.; Yoshio, H.; Hayashi, T.; Otsuki, N. Determination of Phenylpyru-vic Acid in Human Urine and Plasma by GC-NICI-MS. Shiisuryo Bunseki 1992, 40. 165–171.

    CAS  Google Scholar 

  45. Tondeur, Y.; Albro, P.W.; Hass, J.R.; Harvan, D.J.; Schroeder, J.L. Matrix Effect in Determination of 2, 3, 7, 8-Tetrachlorodibenzodioxin by MS. Anal. Chem. 1984, 56, 1344–1347.

    Article  CAS  Google Scholar 

  46. Heumann, K.G. Isotope Dilution Mass Spectrometry of Inorganic and Organic Substances. Fresenius Z. Anal. Chem. 1986, 325, 661–666.

    Article  CAS  Google Scholar 

  47. Calder, A.G.; Garden, K.E.; Anderson, S.E.; Lobley, G.E. Quantitation of Blood and Plasma Amino Acids Using Isotope Dilution GC-EI-MS with U-13C Amino Acids As Internal Standards. Rapid Commun. Mass Spectrom. 1999, 13, 2080–2083.

    Article  CAS  Google Scholar 

  48. Gudzinowicz, B.I.; Gudzinowizc, M.I.; Martin, H.F. The GC-MS Interface, in Fundamentals of integrated GC-MS Part III, Marcel Dekker: New York, 1977; Chapter B, pp. 58–181.

    Google Scholar 

  49. McFadden, W.H. Interfacing Chromatography and Mass Spectrometry. J. Chro-matogr. Sci. 1979, 17, 2–16.

    Article  CAS  Google Scholar 

  50. Lindeman, L.P.; Annis, J.L. A Conventional Mass Spectrometer As a Detector for Gas Chromatography. Anal. Chem. 1960, 32, 1742–1749.

    Article  CAS  Google Scholar 

  51. Gohlke, R.S. Time-of-Flight Mass Spectrometry: Application to Capillary-Column GC.Anal. Chem. 1962 , 34, 1332–1333.

    Article  CAS  Google Scholar 

  52. McFadden, W.H.; Teranishi, R.; Black, D.R.; Day, J.C. Use of Capillary Gas Chromatography With a Time-of-Flight Mass Spectrometer.J. Food Sci. 1963, 28, 316–319.

    Article  CAS  Google Scholar 

  53. Dandeneau, R.D.; Zerenner, E.H. An Investigation of Glasses for Capillary Chromatography.J. High Resol. Chromatogr. /Chromatogr. Commun. 1979, 2, 351–356.

    Article  CAS  Google Scholar 

  54. Dandeneau, R.D.; Zerenner, E.H. The Invention of the Fused-Silica Column: an Industrial Perspective. LC-GC 1990, 8. 908–912.

    CAS  Google Scholar 

  55. Handbook of Derivates for Chromatography; 1st ed.; Blau, G.; King, G.S., editors; Heyden & Son: London, 1977.

    Google Scholar 

  56. Halket, H.M.; Zaikin, V.G. Derivatization in Mass Spectrometry -1. Silylation. Eur. Mass Spectrom. 2003, 9, 1–21.

    Article  CAS  Google Scholar 

  57. Aubert, C.; Rontani, J.-F. Perfluoroalkyl Ketones: Novel Derivatization Products for the Sensitive Determination of Fatty Acids by GC-MS in EI and NICI Modes. Rapid Commun. Mass Spectrom. 2000, 14. 960–966.

    Article  CAS  Google Scholar 

  58. Spiteller, G. Contaminants in Mass Spectrometry. Mass Spectrom. Rev. 1982, 1, 29–62.

    Article  Google Scholar 

  59. Leclerq, P.A.; Camers, C.A. High-Speed GC-MS. Mass Spectrom. Rev. 1998, 17. 37–49.

    Article  Google Scholar 

  60. Prazen, B.J.; Bruckner, C.A.; Synovec, R.E.; Kowalski, B.R. Enhanced Chemical Analysis Using Parallel Column Gas Chromatography With Single-Detector TOF-MS and Chemometric Analysis. Anal. Chem. 1999, 71, 1093–1099.

    Article  CAS  Google Scholar 

  61. Hirsch, R.; Ternes, T.A.; Bobeldijk, I.; Weck, R.A. Determination of Environmentally Relevant Compounds Using Fast GC/TOF-MS. Chimia 2001, 55, 19–22.

    CAS  Google Scholar 

  62. van der Greef, J.; Niessen, W.M.A.; Tjaden, U.R. Liquid Chromatography-Mass Spectrometry. The Need for a Multidimensional Approach. J. Chromatogr. 1989, 474, 5–19.

    Article  Google Scholar 

  63. McFadden, W.H.; Schwartz, H.L.; Evans, S. Direct Analysis of Liquid Chromatographic Effluents.J. Chromatogr. 1976, 122, 389–396.

    Article  CAS  Google Scholar 

  64. Karger, B.L.; Kirby, D.P.; Vouros, P.; Foltz, R.L.; Hidy, B. On-Line Reversed Phase LC-MS. Anal. Chem. 1979, 51, 2324–2328.

    Article  CAS  Google Scholar 

  65. Millington, D.S.; Yorke, D.A.; Burns, P. A New Liquid Chromatography-Mass Spectrometry Interface. Adv. Mass Spectrom. 1980, 8B, 1819–1825.

    CAS  Google Scholar 

  66. Games, D.E.; Hirter, P.; Kuhnz, W.; Lewis, E.; Weerasinghe, N.C.A.; Westwood, S.A. Studies of Combined LC-MS With a Moving-Belt Interface. Journal of Chromatography 1981, 203, 131–138.

    Article  CAS  Google Scholar 

  67. Liang, Z.; Hsu, C.S. Molecular Speciation of Saturates by Online Liquid Chromatography-Field Ionization Mass Spectrometry. Energy Fuels 1998, 12, 637–643.

    Article  CAS  Google Scholar 

  68. Willoughby, R.C.; Browner, R.F. Mono-disperse Aerosol Generation Interface for Combining LC With MS. Anal. Chem. 1984, 56, 2625–2631.

    Article  CAS  Google Scholar 

  69. Brauers, F.; von Bünau, G. Mass Spectrometry of Solutions: a New Simple Interface for the Direct Introduction of Liquid Samples. Int. J. Mass Spectrom. Ion Proc. 1990, 99, 249–262.

    Article  CAS  Google Scholar 

  70. Winkler, P.C.; Perkins, D.D.; Williams, D.K.; Browner, R.F. Performance of an Improved Monodisperse Aerosol Generation Interface for LC-MS. Anal. Chem. 1988, 60, 489–493.

    Article  CAS  Google Scholar 

  71. Chesnov, S.; Bigler, L.; Hesse, M. Detection and Characterization of Natural Poly-amines by HPLC-APCI (ESI) MS. Eur. Mass Spectrom. 2002, 8, 1–16.

    Article  CAS  Google Scholar 

  72. Hayen, H.; Karst, U. Strategies for the LC-MS Analysis of Non-Polar Compounds. J. Chromatogr. A 2003, 1000, 549–565.

    Article  CAS  Google Scholar 

  73. Reemtsma, T. Liquid Chromatography-Mass Spectrometry and Strategies for Trace-Level Analysis of Polar Organic Pollutants. J. Chromatogr. A 2003, 1000, 477–501.

    Article  CAS  Google Scholar 

  74. Robb, D.B.; Covey, T.R.; Bruins, A.P. Atmospheric Pressure Photoionization: an Ionization Method for LC-MS. Anal. Chem. 2000, 72, 3653–3659.

    Article  CAS  Google Scholar 

  75. Raffaeli, A.; Saba, A. Atmospheric Pressure Photoionization Mass Spectrometry. Mass Spectrom. Rev. 2003, 22, 318–331.

    Article  CAS  Google Scholar 

  76. Sage, A.B.; Giles, K. High Throughput Parallel LC/MS Analysis of Multiple Liquid Streams. GIT Laboratory Journal 2000, 4, 35–36.

    CAS  Google Scholar 

  77. Schrader, W.; Eipper, A.; Pugh, D.J.; Reetz, M.T. Second-Generation MS-Based High-Throughput Screening System for Enantioselective Catalysts and Biocata-lysts. Canadian J. Chem. 2002, 80, 626–632.

    Article  CAS  Google Scholar 

  78. Morrison, D.; Davies, A.E.; Watt, A.P. An Evaluation of a Four-Channel Multiplexed ESI Tandem MS for Higher Throughput Quantitative Analysis. Anal. Chem. 2002, 74, 1896–1902.

    Article  CAS  Google Scholar 

  79. Tandem Mass Spectrometry; 1st ed.; McLafferty, F.W., editor; John Wiley & Sons: New York, 1983.

    Google Scholar 

  80. Busch, K.L.; Glish, G.L.; McLuckey, S.A. Mass Spectrometry/Mass Spectrometry, -1st ed.; Wiley VCH: New York, 1988.

    Google Scholar 

  81. Moritz, T.; Olsen, J.E. Comparison Between High-Resolution Selected Ion Monitoring, Selected Reaction Monitoring, and Four-Sector Tandem Mass Spectrometry in Quantitative Analysis of Gib-berellins in Milligram Amounts of Plant Tissue. Anal. Chem. 1995, 67, 1711–1716.

    Article  CAS  Google Scholar 

  82. Johnson, J.V.; Yost, R.A.; Faull, K.F. Tandem MS for the Trace Determination of Tryptolines in Crude Brain Extracts. Anal. Chem. 1984, 56, 1655–1661.

    Article  CAS  Google Scholar 

  83. Dams, R.; Murphy, C.M.; Lambert, W.E.; Huestis, M.A. Urine Drug Testing for Opioids, Cocaine, and Metabolites by Direct Injection LC/Tandem MS. Rapid Commun. Mass Spectrom. 2003, 17, 1665–1670.

    Article  CAS  Google Scholar 

  84. Miao, X.-S.; Metcalfe, C.D. Determination of Carbamazepine and Its Metabolites in Aqueous Samples Using LC-ESI Tandem MS. Anal. Chem. 2003, 75, 3731–3738.

    Article  CAS  Google Scholar 

  85. Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Anal. Chem. 2001, 73, 4676–4681.

    Article  CAS  Google Scholar 

  86. Hughey, C.A.; Rodgers, R.P.; Marshall, A.G. Resolution of 11, 000 Composition-ally Distinct Components in a Single ESI-FT-ICR Mass Spectrum of Crude Oil. Anal. Chem. 2002, 74, 4145–4149.

    Article  CAS  Google Scholar 

  87. Hsu, C.S.; Liang, Z.; Campana, J.E. Hydrocarbon Characterization by Ultrahigh Resolution FT-ICR-MS. Anal. Chem. 1994, 66, 850–855.

    Article  CAS  Google Scholar 

  88. Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by ESI-FT-ICR-MS. Energy Fuels 2001, 15, 1186–1193.

    Article  CAS  Google Scholar 

  89. Wu, Z.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Composition of Explosives by ESI-FT-ICR-MS. Anal. Chem. 2002, 74, 1879–1883.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2004). Hyphenated Methods. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36756-X_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36756-X_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07388-5

  • Online ISBN: 978-3-540-36756-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics