Skip to main content

Electromagnetic form factors of the nucleon

Experiments at MAMI

  • Conference paper
  • First Online:
Many Body Structure of Strongly Interacting Systems
  • 266 Accesses

Abstract

Elastic form factors are of fundamental importance for the understanding of microscopic spatial structures. In case of the proton and the neutron, charge and magnetic form factors can be studied in elastic electron scattering. Techniques to accelerate polarised continuous electron beams, the availability of polarised targets as well as modern concepts and instrumentation for coincidence experiments and recoil polarimetry had an enormous impact on these measurements. The developments and experiments at the Mainz Microtron MAMI will be discussed in a general context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Lyman, A.O. Hanson, M.B. Scott, Phys. Rev. 84, 626 (1951).

    Article  ADS  Google Scholar 

  2. R. Hofstadter, R.W. McAllister, Phys. Rev. 98, 217 (1955).

    Article  ADS  Google Scholar 

  3. G.G. Simon et al., Nucl. Phys. A 333, 381 (1980).

    Article  ADS  Google Scholar 

  4. L. Andivahis et al., Phys. Rev. D 50, 5491 (1994).

    Article  ADS  Google Scholar 

  5. C.E. Hyde-Wright, K. de Jager, Annu. Rev. Nucl. Part. Sci. 54, 217 (2004).

    Article  ADS  Google Scholar 

  6. H.F. Ehrenberg, R. Hofstadter, Phys. Rev. 110, 544 (1958).

    Article  ADS  Google Scholar 

  7. A. Lung et al., Phys. Rev. Lett. 70, 718 (1993).

    Article  ADS  Google Scholar 

  8. P. Markowitz et al., Phys. Rev. C 48, R5 (1993).

    Article  ADS  Google Scholar 

  9. W. Fabian, H. Arenhövel, Nucl. Phys. A 314, 253 (1979).

    Article  ADS  Google Scholar 

  10. M. Schwamb, these proceedings.

    Google Scholar 

  11. H. Anklin et al., Phys. Lett. B 336, 313 (1994).

    Article  ADS  Google Scholar 

  12. E.E.W. Bruins et al., Phys. Rev. Lett. 75, 21 (1995).

    Article  ADS  Google Scholar 

  13. H. Anklin et al., Phys. Lett. B 428, 248 (1998).

    Article  ADS  Google Scholar 

  14. G. Kubon et al., Phys. Lett. B 524, 26 (2002).

    Article  ADS  Google Scholar 

  15. K.I. Blomqvist et al., Nucl. Instrum. Methods A 403, 263 (1998).

    Article  ADS  Google Scholar 

  16. J. Arnold et al., Nucl. Instrum. Methods A 386, 211 (1997).

    Article  ADS  Google Scholar 

  17. J. Jourdan, I. Sick, J. Zhao, Phys. Rev. Lett. 79, 5186 (1997).

    Article  ADS  Google Scholar 

  18. E.E.W. Bruins et al., Phys. Rev. Lett. 79, 5187 (1997).

    Article  ADS  Google Scholar 

  19. H. Gao et al., Phys. Rev. C 50, R546 (1994).

    Article  ADS  Google Scholar 

  20. W. Xu et al., Phys. Rev. Lett. 85, 2900 (2000).

    Article  ADS  Google Scholar 

  21. W. Xu et al., Phys. Rev. C 67, 012201 (2003).

    Article  ADS  Google Scholar 

  22. W.K. Brooks, J.D. Lachniet, Nucl. Phys. A 755, 261 (2005).

    Article  ADS  Google Scholar 

  23. A.I. Akhiezer et al., Sov. Phys. JETP 6, 588 (1958).

    MathSciNet  ADS  Google Scholar 

  24. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).

    Article  ADS  Google Scholar 

  25. R.G. Arnold, C.E. Carlson, F. Gross, Phys. Rev. C 23, 363 (1981).

    Article  ADS  Google Scholar 

  26. J. Golak et al., Phys. Rev. C 63, 034006 (2001).

    Article  ADS  Google Scholar 

  27. H. Arenhövel et al., Z. Phys. A 331, 123 (1988).

    ADS  Google Scholar 

  28. H. Arenhövel et al., Phys. Rev. C 52, 1232 (1995).

    Article  ADS  Google Scholar 

  29. K. Aulenbacher et al., Nucl. Instrum. Methods A 391, 498 (1997).

    Article  ADS  Google Scholar 

  30. K.H. Steffens et al., Nucl. Instrum. Methods A 325, 378 (1993).

    Article  ADS  Google Scholar 

  31. V. Tioukine et al., contribution to the 8th European Par-ticle Accelerator Conference (EPAC 2002), Paris, France, 3–7 June 2002.

    Google Scholar 

  32. P. Drescher et al., Nucl. Instrum. Methods A 381, 169 (1996).

    Article  ADS  Google Scholar 

  33. A. Jankowiak, these proceedings.

    Google Scholar 

  34. F. Maas, these proceedings.

    Google Scholar 

  35. D. Eyl et al., Z. Phys. A 352, 211 (1995).

    Article  ADS  Google Scholar 

  36. B.D. Milbrath et al., Phys. Rev. Lett. 80, 452 (1998).

    Article  ADS  Google Scholar 

  37. T. Pospischil et al., Eur. Phys. J. A 12, 125 (2001).

    Article  ADS  Google Scholar 

  38. M.K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000).

    Article  ADS  Google Scholar 

  39. O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002).

    Article  ADS  Google Scholar 

  40. J. Arrington, Phys. Rev. C 69, 022201 (2004).

    Article  ADS  Google Scholar 

  41. I.A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005).

    Article  ADS  Google Scholar 

  42. L.W. Mo, Y.S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

    Article  ADS  Google Scholar 

  43. M. Vanderhaeghen, these proceedings.

    Google Scholar 

  44. E. Fermi, L. Marshal, Phys. Rev. 72, 1139 (1947).

    Article  ADS  Google Scholar 

  45. S. Kopecki et al., Phys. Rev. C 56, 2229 (1997).

    Article  ADS  Google Scholar 

  46. Yu.A. Alexandrov et al., Phys. Part. Nucl. 30, 29 (1999).

    Article  Google Scholar 

  47. H. Leeb, C. Teichtmeister, Phys. Rev. C 48, 1719 (1993).

    Article  ADS  Google Scholar 

  48. Yu.A. Alexandrov, Phys. Rev. C 49, 2297 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  49. S. Galster et al., Nucl. Phys. B 32, 221 (1971).

    Article  ADS  Google Scholar 

  50. S. Platchkov et al., Nucl. Phys. A 510, 740 (1990).

    Article  ADS  Google Scholar 

  51. M. Meyerhoff et al., Phys. Lett. B 327, 201 (1994).

    Article  ADS  Google Scholar 

  52. J. Becker et al., Eur. Phys. J. A 6, 329 (1999).

    Article  ADS  Google Scholar 

  53. M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999).

    Article  ADS  Google Scholar 

  54. C. Herberg et al., Eur. Phys. J. A 5, 131 (1999).

    Article  ADS  Google Scholar 

  55. D. Rohe et al., Phys. Rev. Lett. 83, 4257 (1999).

    Article  ADS  Google Scholar 

  56. D. Rohe, these proceedings.

    Google Scholar 

  57. D.I. Glazier et al., Eur. Phys. J. A 24, 101 (2005).

    Article  ADS  Google Scholar 

  58. J. Bermuth et al., Phys. Lett. B 564, 199 (2003).

    Article  ADS  Google Scholar 

  59. G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004).

    Article  ADS  Google Scholar 

  60. R. Madey et al., Phys. Rev. Lett. 91, 122002 (2003).

    Article  ADS  Google Scholar 

  61. R. Alarcon et al., contribution to the 16th International Spin Physics Symposium (SPIN 2004), Trieste, Italy, 10–16 Oct 2004.

    Google Scholar 

  62. R. Schiavilla, I. Sick, Phys. Rev. C 64, 041002 (2001).

    Article  ADS  Google Scholar 

  63. J. Friedrich, Th. Walcher, Eur. Phys. J. A 17, 607 (2003).

    Article  ADS  Google Scholar 

  64. I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999).

    Article  ADS  Google Scholar 

  65. H. Zhu et al., Phys. Rev. Lett. 87, 081801 (2001).

    Article  ADS  Google Scholar 

  66. T. Eden et al., Phys. Rev. C 50, 1749 (1994).

    Article  ADS  Google Scholar 

  67. J. Friedrich, N. Voegler, Nucl. Phys. A 373, 219 (1982).

    Article  Google Scholar 

  68. B. Krusche, Eur. Phys. J. A 26, 7 (2005).

    Article  ADS  Google Scholar 

  69. S. Kowalski, these proceedings.

    Google Scholar 

  70. G. Hohler et al., Nucl. Phys. B 114, 505 (1976).

    Article  ADS  Google Scholar 

  71. W.R. Frazer, J.R. Fulco, Phys. Rev. Lett. 2, 365 (1959).

    Article  ADS  Google Scholar 

  72. P. Mergell, U.G. Meissner, D. Drechsel, Nucl. Phys. A 596, 367 (1996).

    Article  ADS  Google Scholar 

  73. H.W. Hammer, U.G. Meissner, D. Drechsel, Phys. Lett. B 385, 343 (1996).

    Article  ADS  Google Scholar 

  74. H.W. Hammer, D. Drechsel, U.G. Meissner, Phys. Lett. B 586, 291 (2004).

    Article  ADS  Google Scholar 

  75. H.W. Hammer, these proceedings

    Google Scholar 

  76. M.O. Distler (contact person) et al., Experiment MAMI-A1-2/2005.

    Google Scholar 

  77. M.O. Distler, W. Heil, D. Rohe (contact persons) et al., Experiment MAMI-A1-1/2005.

    Google Scholar 

  78. A. Liesenfeld et al., Phys. Lett. B 468, 20 (1999).

    Article  ADS  Google Scholar 

  79. R. Beck, these proceedings.

    Google Scholar 

  80. H. Schmieden, these proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Ostrick, M. (2006). Electromagnetic form factors of the nucleon. In: Arenhövel, H., Backe, H., Drechsel, D., Friedrich, J., Kaiser, KH., Walcher, T. (eds) Many Body Structure of Strongly Interacting Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36754-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36754-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36753-6

  • Online ISBN: 978-3-540-36754-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics