Skip to main content

X-ray phase contrast imaging at MAMI

  • Conference paper
  • First Online:
Many Body Structure of Strongly Interacting Systems

Abstract

Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 µm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h=(8.6 ± 0.1) µm in the horizontal and σ v=(7.5 ± 0.1) µm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6 m from the X-ray film. Holograms of strings were taken with a beam spot size σ v=(0.50 ± 0.05) µm in vertical direction, and a monochromatic X-ray beam of 6 keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 × 13 µm2 provides a highly effcient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f=(1.2 ± 0.4) µm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v=(1.2±0.3) µm and a geometrical magnification of up to 7.4 high-quality holograms of tiny transparent strings were taken in which the holographic information is contained in up to 18 interference fringes.

Former PhD Scholarship Holder in the Long Term Mission System from the Arabic Republic of Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Arfelli, M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palmaz, M. Di Michiel, R. Longox, A. Olivox, S. Panix, D. Pontoni, P. Poropat, M Prestx, A Rashevskyx, G. Trombay, A. Vacchix, E. Vallazza, F. Zanconati, Phys. Med. Biol. 43, 2845 (1998).

    Article  Google Scholar 

  2. C.J. Kotre, I.P. Birch, Phys. Med. Biol. 44, 2853 (1999).

    Article  Google Scholar 

  3. L.D. Turner, B.B. Dhal, J.P. Hayes, A.P. Mancuso, K.A. Nugent, D. Paterson, R.E. Scholten, C.Q. Tran, A.G. Peele, Opt. Expr. 12, 2960 (2004).

    Article  ADS  Google Scholar 

  4. F. Pfeiffer, T. Weitkamp, O. Bunk, Ch. David, Nature Physics —advance online publication— www.nature.com/naturephysics, published online: 26 March 2006; doi:10.1038/nphys265.

    Google Scholar 

  5. S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature (London) 384, 335 (1996).

    Article  ADS  Google Scholar 

  6. Xizeng Wu, Hong Liu, Med. Phys. 30, 2169 (2003).

    Article  Google Scholar 

  7. T. Takeda, A. Momose, E. Ueno, Y. Itai, J. Synchrotron Rad. 5, 1133 (1998).

    Article  Google Scholar 

  8. R.A. Lewis, Phys. Med. Biol. 49, 3573 (2004).

    Article  Google Scholar 

  9. D. Gabor, Nature 161, 777 (1948).

    Article  ADS  Google Scholar 

  10. P. Spanne, C. Raven, I. Snigireva, A. Snigirev, Phys. Med. Biol. 44, 741 (1999).

    Article  Google Scholar 

  11. P. Cloetens, R. Barrett, J. Baruchel, J. Guigay, M. Schlenker, J. Phys. D 29, 133 (1996).

    Article  ADS  Google Scholar 

  12. Z.W. Hu, B. Lai, Y.S. Chu, Z. Cai, D.C. Mancini, B.R. Thomas, A.A. Chernov, Phys. Rev. Lett. 87, 148101 (2001).

    Article  ADS  Google Scholar 

  13. R.W. James, The optical Principles of the Diffraction of X-rays (Cornell University Press, 1965).

    Google Scholar 

  14. V. Kohn, I. Snigireva, A. Snigirev, Opt. Commun. 198, 293 (2001).

    Article  ADS  Google Scholar 

  15. Mahmoud El Ghazaly, X-ray Phase Contrast Imaging at the Mainz Microtron MAMI, Dissertation, Institut für Kernphysik, Universität Mainz, 2005.

    Google Scholar 

  16. B.L. Henke, J.Y. Uejio, G.F. Stone, C.H. Dittmore, F.G. Fujiwara, J. Opt. Soc. Am. B. 11, 1540 (1986).

    Article  ADS  Google Scholar 

  17. http://www.filmscanner.info/NikonSuperCoolscan-4000ED.html.

    Google Scholar 

  18. Georg Joos, Erwin Schopper, Grundriss der Photographie und ihrer Anwendungen besonders in der Atomphysik (Akademische Verlagsgesellschaft M. B. H., Frankfurt am Main, 1958).

    Google Scholar 

  19. Y. Hwu, H.H. Hsieh, M.J. Lu, W.L. Tsai, H.M. Lin, W.C. Goh, B. Lai, J.H. Je, C.K. Kim, D.Y. Noh, H.S. Youn, G. Tromba, G. Margaritondo, J. Appl. Phys. 86, 4613 (1999).

    Article  ADS  Google Scholar 

  20. O. Chubar, A. Snigirev, S. Kuznetsov, T. Weitkamp, V. Kohn, Proceedings DIPAC 2001, ESRF, Grenoble, France.

    Google Scholar 

  21. A. Caticha, Phys. Rev. A 40, 4322 (1989).

    Article  ADS  Google Scholar 

  22. http://www.andor-tech.com/germany/products/oem.cfm

    Google Scholar 

  23. http://www.data.it/support/data_sheets/e2vtech/47-10back.pdf

    Google Scholar 

  24. http://www.olympus.pl/pliki/mikroskopy/dokumenty/LM_cameras_ENG.pdf.

    Google Scholar 

  25. C. Raven, Microimaging and Tomography with High Energy Coherent Synchrotron X-Rays (Shaker Verlag, 1998).

    Google Scholar 

  26. R.W. Gerchberg, W.O. Saxton, Optik 35, 237 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

El-Ghazaly, M. et al. (2006). X-ray phase contrast imaging at MAMI. In: Arenhövel, H., Backe, H., Drechsel, D., Friedrich, J., Kaiser, KH., Walcher, T. (eds) Many Body Structure of Strongly Interacting Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36754-3_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-36754-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36753-6

  • Online ISBN: 978-3-540-36754-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics