Towards Experimental Tests of Quantum Effects in Cytoskeletal Proteins

Part of the The Frontiers Collection book series (FRONTCOLL)


This volume is appropriately titled “The Emerging Physics of Consciousness” and much of it is focused on using some aspect of “quantum weirdness” to solve the problems associated with the phenomenon of consciousness. This is sometimes done in the hope that perhaps the two mysteries will somehow cancel each other through such phenomena as quantum coherence and entanglement or superposition of wave functions.

We are not convinced that such a cancellation can take place. In fact, finding that quantum phenomena are involved in consciousness, what we will call the “quantum consciousness idea” (QCI) (fathered largely by Penrose and Hameroff CHEXX[40, 102, 103]), is likely to confound both mysteries and is of great interest.

In our contribution, we want to emphasize the “merging” part of this volume’s title by pointing out that there is a glaring need for properly controlled and reproducible experimental work if any proposed quantum phenomena in biological matter, let alone consciousness are to be taken seriously.

There are three broad kinds of experiments that one can devise to test hypotheses involving the relevance of quantum effects to the phenomenon of consciousness. The three kinds address three different scale ranges associated roughly with tissueto-cell (1 cm–10 µm), cell-to-protein (10 µm–10 nm) and protein-to-atom (10 nm–1 Å) sizes. Note that we are excluding experiments that aim to detect quantum effects at the “whole human” or even “society” level as these have consistently given either negative results or been plagued by irreproducibility and lack of appropriate controls (e. g. the various extra sensory perception and remote viewing experiments CHEXX[72]).

The consciousness experiments belonging to the tissue-cell scale frequently utilize apparatus such as electroencephalographs (EEG) or magnetic resonance imaging (MRI) to track responses of brains to stimuli. The best example of such is the excellent work undertaken by Christoff Koch’s group at Caltech CHEXX[61] sometimes in collaboration with the late Francis Crick CHEXX[22], tracking the activity of living, conscious human brain neurons involved in visual recognition. These experiments are designed to elucidate the multi- and single-cellular substrate of visual consciousness and awareness and are likely to lead to profound insights into the working human brain. Because of the large spatial and long temporal resolution of these methods, it is unclear whether they can reveal possible underlying quantum behavior (barring some unlikely inconsistency with classical physics such as, for instance, nonlocality of neural firing).

The second size scale that is explored for evidence of quantum behavior related to aspects of consciousness (memory in particular) is that between a cell and a protein. Inspired by QCI, seminal experimental work has been done by Nancy Woolf CHEXX[142, 143] on dendritic expression of MAP-2 in rats and has been followed by significant experiments performed by members of our group on the effects of MAPTAU overexpression on the learning and memory of transgenic Drosophila (summarized in Sect. 4.3). Such attempts are very important to the understanding of the intracellular processes that undoubtedly play a significant role in the emergence of consciousness but it is hard to see how experiments involving tracking the memory phenotypes and intracellular redistribution of proteins can show a direct quantum connection. It seems clear that experimentation at this size scale can at best provide evidence that is “not inconsistent with” and perhaps “suggestive of” the QCI CHEXX[86].

The third scale regime is that of protein-to-atom sizes. It is well understood that at the low end of this scale, quantum effects play a significant role and it is slowly being recognized that even at the level of whole-protein function, quantummechanical (QM) effects may be of paramount importance to biological processes such as, for instance, enzymatic action CHEXX[4] or photosynthesis CHEXX[112].

In what follows, we give a brief overview of our theoretical QED model of microtubules and the extensive experimental work undertaken (belonging to the second and third size scales). We conclude by pointing towards directions of further investigation that can provide direct evidence of quantum effects in the function of biological matter and perhaps consciousness.


Dipole Moment Surface Plasmon Resonance Coherent State Cytoskeletal Protein Electric Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, G.S. (1984). Phys. Rev. Lett. 53:1732–1742.ADSGoogle Scholar
  2. 2.
    Altewischer, E.T. (2002). Nature 418:304–306.ADSGoogle Scholar
  3. 3.
    Armstrong, J.D., deBelle, J.S., Wang, Z. & Kaiser, K. (1998). Learning & Memory 5:102–114.Google Scholar
  4. 4.
    Ball, P. (2004). Nature 431:397.ADSGoogle Scholar
  5. 5.
    Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-Iqbal, I. & Wisniewski, H.M. (1989). Brain Res. 477:90–99.Google Scholar
  6. 6.
    Bardeen, J. (1979). Phys. Rev. Lett. 42:1498–1500.ADSGoogle Scholar
  7. 7.
    Bardeen, J. (1980). Phys. Rev. Lett. 45:1978–1980.ADSGoogle Scholar
  8. 8.
    Bardeen, J. (1990). Physics Today December:25–31.Google Scholar
  9. 9.
    Bayley, P.P., Sharma, K.K. & Martin, S.R. (1994). In Microtubules, Hyams, J.S., Lloyd, C.W., (eds.) Wiley-Liss, New York: 111–137.Google Scholar
  10. 10.
    Beck, C.D.O., Scrhoeder, B. & Davis, R.L. (2000). J. Neuroscience 20:2944–2953.Google Scholar
  11. 11.
    Bednorz, J.G.M. (1988). Rev. Mod. Phys 60:585–600.ADSGoogle Scholar
  12. 12.
    Bernadot, F. (1992). Electrophysics Letters 17:34–44.ADSGoogle Scholar
  13. 13.
    BIAcore, I.B.A.Google Scholar
  14. 14.
    Brekhovskikh, L.M. (1980). Waves in Layered Media. New York: Academic Press.zbMATHGoogle Scholar
  15. 15.
    Brion, N.J., Tremp, G. & Octave, N.J. (1999). Am, J Pathol 154:255–270.Google Scholar
  16. 16.
    Brown, J.A. (1999). University of Alberta, Canada: Edmonton.Google Scholar
  17. 17.
    Buchanan, R.L.B., S. (1993). Neuron 10:839–850.Google Scholar
  18. 18.
    Chaudhur, A.R., Tomita, I., Mizuhashi, F., Murata, K. Potenziano, J.L. & Luduena, R.F. (1998). Biochemistry 37(49):17157–17162.Google Scholar
  19. 19.
    Cheng, Y., Endo, K., Wu, K., Rodan, A.R., Heberlein, U., and Davis, R.L. (2001). Cell 105:757–768.Google Scholar
  20. 20.
    Coleman, S. (1976). Ann. Phys. 101:239–267.ADSGoogle Scholar
  21. 21.
    Collier, C.P., wong, E.W., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S. & Heath, J.R. (1999). Science 285:391–394.Google Scholar
  22. 22.
    Crick, F.C., Koch, C., Kreiman, G., and Fried, I (2004). Neurosurgery 55:273–282.Google Scholar
  23. 23.
    Crittenden, J.R., Skoulakis, E.M.C., Han, K-A., Kalderon, D., and Davis, R.L. (1998). Learning & Memory 5:38–51.Google Scholar
  24. 24.
    deBelle, S.J.H., M. (1994). Science 263:692–695.ADSGoogle Scholar
  25. 25.
    del Guidice, E., Doglia, S., Milani, M., and Vitiello, G. (1986). Nucl. Phys. B 275:185–195.ADSGoogle Scholar
  26. 26.
    del Guidice, E., Preparata, G., and Vitiello, G. (1988). Phys. Rev. Lett. 61:1085.ADSGoogle Scholar
  27. 27.
    Derycke, V.M., R., Appenzeller, J., and Avouris, Ph. (2001). Nano Lett 1(9):453–456.ADSGoogle Scholar
  28. 28.
    Dias, O.J.C.L., J.P.S. (2001). J. Math. Phys 42:3292–3299.zbMATHADSMathSciNetGoogle Scholar
  29. 29.
    Diaz, J.F., Pantos, E., Bordas, J., and Andreu, M.J. (1994). J. Mol. Biol. 238:213–225.Google Scholar
  30. 30.
    Dubnau, J., Grady, L., Kitamoto, T., and Tully, T. (2001). Nature 411:476–480.ADSGoogle Scholar
  31. 31.
    Dustin, P. (1992). Microtubules. Berlin: Springer-Verlag.Google Scholar
  32. 32.
    Earp, R.L.D., R.E. (1998). Surface Plasmon Resonance in Commercial Biosensors: Applications to Clinical Bioprocesses and Environmental Samples, (ed.) G. Ramsay. New York: John Wiley & Sons Inc.Google Scholar
  33. 33.
    Flyvberg, H., Holy, T.E., and Leibler, S. (1994). Phys. Rev. Lett. 73(17):2372–2375.ADSGoogle Scholar
  34. 34.
    Fröhlich, H. (1986). Bioelectrochemistry, (ed.) F.K. Guttman, New York: Plenum Press.Google Scholar
  35. 35.
    Garcia, M.L.C. (2001). Current Opinion in Cell Biology 13:41–48.Google Scholar
  36. 36.
    Gilson, M.K.H. (1986). Biopolymers 25:2097–2119.Google Scholar
  37. 37.
    Gisin, N.P. (1993). J. Phys, A. 26:2233–2239.ADSMathSciNetGoogle Scholar
  38. 38.
    Grutner, G. (1994). Density Waves in Solids. Vol. Advanced Book Program. 1994, Reading, Mass: Addison-Wesley Publication Co.Google Scholar
  39. 39.
    Hameroff, S.R. (1974). Am. J. Clin. Med. 2:163–173.Google Scholar
  40. 40.
    Hameroff, S.R. (1998). Toxicology Letters 100–101:31–39.Google Scholar
  41. 41.
    Harcoche, S.R. (1994). Cavity Quantum Electrodynamics, (ed.) P. Berman. New York: Academic Press.Google Scholar
  42. 42.
    Hedestrand, G. (1929). J. Phys. Chem. B2:428–438.Google Scholar
  43. 43.
    Heidary, G.F., M. (2001). Mech. Development 108:171–178.Google Scholar
  44. 44.
    Himmler, A. (1989). Mol. Cell. Biol. 9:1389–1396.Google Scholar
  45. 45.
    Himmler, A., Drechsel, D., Kirschner, M.W., and Martin, J.D.W. (1989). Mol. Cell. Biol. 9:1381–1388.Google Scholar
  46. 46.
    Hirokawa, N., Shiomura, Y., and Okabe. S. (1988). J. Cell Biol. 107:1449–1459.Google Scholar
  47. 47.
    Hutton, M., Lewis, J., dickson, D., Yen, S-H., and McGowan, E. (2001). Trends in Mol. Medicine 7:467–470.Google Scholar
  48. 48.
    Hyman, A.A., Chretien, D., Arnal, I., and Wade, R.H. (1995). J. Cell Biol. 128(1/2):117–125.Google Scholar
  49. 49.
    Jackson, J.D. (1999). Classical Electrodynamics. 3rd edn. 1999, New York: John Wiley & Sons Inc.zbMATHGoogle Scholar
  50. 50.
    Jackson, G.R., Wiedau-Pazos, M., Wagle, N., Brown, C.A., Massachi, S., and Geschwind, D.H. (2002). Neuron 43:409–519.Google Scholar
  51. 51.
    Jacobs, M. (1979). In Microtubules, K.H. Roberts, J.S., (ed.). 1979, Academic Press: London.Google Scholar
  52. 52.
    Jelinek, F., Pokorny, J., Saroch, J., Trkal, V., Hasek, J., and Palan, B. (1999). Bioelectrochemistry and Bioenergetics 48:261–266.Google Scholar
  53. 53.
    Jibu, M., Hagan, S., Hameroff, S.R., Pribram, K., and Yasue, K. (1994). Biosystems 32:195–214.Google Scholar
  54. 54.
    Jobs, E., Wolf, D.E., and Fylvbjerg, H. (1997). Phys. Rev. Lett. 29(3):519–522.ADSGoogle Scholar
  55. 55.
    Jones, T.C., Wu, X., Simpson, C.R. Jr., Clayhold, J.A., and McCarten, J.P. (2000). Phys. Rev. B 61:10066–10075.ADSGoogle Scholar
  56. 56.
    Jorgenson, R.C., Jung, C., Yee, S.S., and Burgess, L.W. (1993). Sensors and Actuators B13–14:721–722.Google Scholar
  57. 57.
    Julsgaard, B., Kozhekin, A., and Polzik, E. (2001). Nature 413:400–412.ADSGoogle Scholar
  58. 58.
    Kielpinski, D., Meyer, V., Rowe, M.A., Sackett, C.A., Itano, W.M., Monroe, C., and Wineland, W.M. (2001). Science 291:1013–1033.ADSGoogle Scholar
  59. 59.
    Kirkwood, J.G. (1939). J. Chem. Phys. 7:911–919.ADSGoogle Scholar
  60. 60.
    Kirkwood, J.G. (1939). J. Phys. Chem. 7:919–924.Google Scholar
  61. 61.
    Koch, C. (2004). Current Biology 14:497–97.Google Scholar
  62. 62.
    Koruga, D.L. (1985). Ann. NY Acad. Sci 466:953–957.ADSGoogle Scholar
  63. 63.
    Kozhuma, T., Dennison, C., McFarlane, W., Nakashima, S., Kitagawa, T., Inoue, T., Kai, Y., Nishio, N., Shidara, S., Suzuki, S. & Sykes, A.G. (1999). J. Biol. Chem 270:25733–25738.Google Scholar
  64. 64.
    Kretschmann, E., Z. (1971). Physik 241:313–324.ADSGoogle Scholar
  65. 65.
    Krive, I.V.R., A.S. (1985). Solid State Commun. 55:691–694.ADSGoogle Scholar
  66. 66.
    Kwiat, p., Matle, P., Weirfurter, P., and Zeilinger, K. (1996). Phys. Rev. Lett. 75:4337–4343.ADSGoogle Scholar
  67. 67.
    Lal, P. (1985). Phys. Lett. 111(A):389–400.Google Scholar
  68. 68.
    Latyshev, y.I., Laborde, O., Monceau, P., and Kaumunzer, S. (1997). Phys. Rev. Lett. 78:919–922.ADSGoogle Scholar
  69. 69.
    Laughlin, R.B.P. (2000). Proc. Nat. Acad. Sci, USA 97:28–31.ADSMathSciNetGoogle Scholar
  70. 70.
    Lee, V., Goedert, M., and Trojanowski, J.Q. (2001). Ann. Rev. Neuroscience 24:1121–1159.Google Scholar
  71. 71.
    Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Paul-Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W.L., Yen, S.H., Dickson, D.W., Davies, P., and Hutton, M. (2000). Nat. Genet. 1:127–158.Google Scholar
  72. 72.
    Lilienfeld, S., O. (1999). Skeptical Inquirer Magazine Online, Nov/Dec.Google Scholar
  73. 73.
    Liliom, K., Wagner, G., Pacz, A., Vascante, M., Kovacs, J., and Ovadi, J. (2000). Eur. J. Biochem. 267:4731–4739.Google Scholar
  74. 74.
    Lioubimov, V., Kolomenski, A.A., Mershin, A., Nanopoulos, D.V., and Schuessler, H.A. (2004). Applied Optics 43(17).Google Scholar
  75. 75.
    Lofas, S., Johnsson, B., Edstrom, Al. Hansson, A., Lindquist, G., Muller, H., and Stigh, L. (1995). Biosensors and Bioelectronics 10:813–822.Google Scholar
  76. 76.
    Luduena, R.F. (1998). Int. Rev. Cytol. 178:207–275.CrossRefGoogle Scholar
  77. 77.
    Maki, K. (1977). Phys. Rev. Lett. 39:46–48.ADSGoogle Scholar
  78. 78.
    Matsubara, K., Kawata, S., and Minami, S. (1988). Applied Optics 27:1160–1163.ADSCrossRefGoogle Scholar
  79. 79.
    Mavromatos, N.E., Nanopoulos, D.V., and Zioutas, K. (1998). Advances in Structural Biology 5:127–137.Google Scholar
  80. 80.
    Mavromatos, N.E.N. and Nanopoulos, D.V. (1998). Int. J. of Mod. Physics B B12:517–527.ADSGoogle Scholar
  81. 81.
    Mavromatos, N.E., Mershin, A., and Nanopoulos, D.V. (2002). Int. J. of Mod. Physics B 16(24):3623–3642.ADSGoogle Scholar
  82. 82.
    Mavromatos, N.E. (1999). Bioelectrochemistry and Bioenergetics 48:100–123.Google Scholar
  83. 83.
    McGuire, S.E., Le, P.T., and Davis, R.L. (2001). Science 293:1330–1333.ADSGoogle Scholar
  84. 84.
    Melendez, J., Carr, R., Bartholomew, D.U., Kukanskis, K., Elkind, J., Yeee, S., Furlong, C., and Woodbury, R. (1996). Sensors and Actuators B35:1–5.Google Scholar
  85. 85.
    Melki, R., Carlier, M.F., and Pantaloni, D., and Timasheff, S.N. (1989). Biochemistry 28:9143–9152.Google Scholar
  86. 86.
    Mershin, A., Pavlopoulos, E., Fitch, O., Braden, B.C., Nanopoulos, D.V., and Skoulakis, E.M.C.S. (2004). Learning & Memory 11(2):277–287.Google Scholar
  87. 87.
    Mershin, A., Kolomenskii, A.A., Schuessler, H.A., Nanopoulos, D.V. (2004). Biosystems 77:73–85.Google Scholar
  88. 88.
    Mershin, A., Nanopoulos, D.V., and Skoulakis, E.M.C.S. (1999). Proceedings of the Academy of Athens 74:123–173.Google Scholar
  89. 89.
    Miller, J.H.J., Ordonez, C., and Prodan, E. (2000). Phys. Rev. Lett. 84:1555–1558.ADSGoogle Scholar
  90. 90.
    Miller, J.H.J., Richard, J., Tucker, J.R., and Brandeen, J. (1983). Phys. Rev. Lett. 51:1592–1595.ADSGoogle Scholar
  91. 91.
    Miller, J.H.J., Thorne, R.E., Lyons, W.G., Tucker, J.R. (1985). Phys. Rev. B. 31:5229–5243.ADSGoogle Scholar
  92. 92.
    Miller, J.H.J., Cardenas, G., Garcia-Perez, A., More, W., and Beckwith, A.W. (2003). J. Phys A:Math Gen. 36:9209–9221.ADSGoogle Scholar
  93. 93.
    Mitchison, J.K., M.W. (1984). Nature 312:237–242.ADSGoogle Scholar
  94. 94.
    Mitchison, J. (1997). Annu. Rev. Cell. Dev. Biol 13:83–117, 99–100.Google Scholar
  95. 95.
    Mori, H. (1989). Biochemical and Biophysical Research Communications 159(3):1221–1226.Google Scholar
  96. 96.
    Nanopoulos, D.V. (1995). October 4–8, 1994, invited talk at the “Physics Without Frontiers Four Seas Conference”, Trieste, Italy, June 25–July 1, 1995. also in, XV Brazilian National Meeting on Particles and Fields. 1995. Angra dos Reis, Brazil. Scholar
  97. 97.
    Nogales, E., Whittaker, M., Milligan, R.A., and Downing, K.H. (1999). Cell 96:79–88.Google Scholar
  98. 98.
    Nogales, E., Wolf, S.G., and Downing, K.H. (1998). Nature 291:199–203.ADSGoogle Scholar
  99. 99.
    Novak, M. (1999). PNAS (USA) 88:5837–5841.ADSMathSciNetGoogle Scholar
  100. 100.
    Oberparleiter, B.W., P. (2001). Phys. Rev. A 64:23–28.Google Scholar
  101. 101.
    Otwinowski, M., Paul, R., and Laidlaw, W.G. (1988). Phys. Lett. A. 128:483.ADSMathSciNetGoogle Scholar
  102. 102.
    Penrose, R. (1989). The Emperor’s New Mind. 1st edn., Oxford: Oxford University Press.Google Scholar
  103. 103.
    Penrose, R. (1994). Shadows of the Mind. Oxford: Oxford University Press.Google Scholar
  104. 104.
    Pereira, A.k., A. & Peng, A. (1992). Phys. Rev. Lett. 68:3663–3666.ADSGoogle Scholar
  105. 105.
    Peterlinz, K.A. (1996). Optics Communications 130:260.ADSGoogle Scholar
  106. 106.
    Philip, N., Acevedo, S., and Skoulakis, E.M.C. (2001). J. Neuroscience 21:8417–8425.Google Scholar
  107. 107.
    Pokorny, J., Jelinek, F, and Trkal, V. (1998). Bioelectrochemistry and Bioenergetics 45:239–245.Google Scholar
  108. 108.
    Pokorny, J. (1999). Bioelectrochemistry and Bioenergetics 48:267–271.Google Scholar
  109. 109.
    Quillin, M.L.M. (2000). Acta Crystallogr. D Biol. Crystallogr. 56(7):791–794.Google Scholar
  110. 110.
    Raether, H. (1988). Springer Tracts in Modern Physics 111. New York: Springer-Verlag.Google Scholar
  111. 111.
    Rauschenbeutel, E. (2000). Science 288:2024–2028.ADSGoogle Scholar
  112. 112.
    Ritz, T., Damjanovic, A., and Schulten, K. (2002). Chem. Phys. Chem. 3:243–248.Google Scholar
  113. 113.
    Ross, J.H., Jr., Wang, Z., and Slichter, C.P. (1986). Phys. Rev. Lett. 56:663–666.ADSGoogle Scholar
  114. 114.
    Ross, J.H., Jr., Wang, Z., and Slichter, C.P. (1990). Phys. Rev. B. 41:2722–2734.ADSGoogle Scholar
  115. 115.
    Sackett, D.L. (1995). In Subcellular Biochemistry, B.B.R. Biswas, S., (ed.). Plenum Press: New York.Google Scholar
  116. 116.
    Sackett, L. (2000). Nature 404:256–259.ADSGoogle Scholar
  117. 117.
    Samal, S.G., K.E. (2001). Chemical Communications:2224–2225.Google Scholar
  118. 118.
    Sanchez-Mondragon, J.J., Narozhny, N.B., and Eberly, J.H. (1983). Phys. Rev. Lett. 51:550–560.ADSGoogle Scholar
  119. 119.
    Sataric, M.V., Tuszynski, J.A., and Zakula, R.B. (1993). Physical Review E 48(1):589–597.ADSGoogle Scholar
  120. 120.
    Sataric, M.V., Zekovic, S., Tuszynski, J.A., and Pokorny, J. (1998). Phys. Rev. E 58:6333–6340.ADSGoogle Scholar
  121. 121.
    Schlag, E.W., Sheu, S-Y., Yang, D-Y., Sezle, H.L., and Lin, S.H. (2000). PNAS (USA) 97:1068–1072.ADSGoogle Scholar
  122. 122.
    Schuessler, H.A., Mershin, A., Kolomenskii, A.A., and Nanopoulos, D.V. (2003). J. Modern Optics 50(15–17):2381–2391.ADSGoogle Scholar
  123. 123.
    Scully, M.O.Z., S. (2001). PNAS (USA) 98(17):9490–9493.zbMATHADSMathSciNetGoogle Scholar
  124. 124.
    Skoulakis, E.M.C.K., D., and Davis, R.L. (1993). Neuron 11:197–208.Google Scholar
  125. 125.
    Skoulakis, E.M.C.D., R.L. (1996). Neuron 17:931–944.Google Scholar
  126. 126.
    Song, K.-H.Z., W-J. (2001). Physics Letters A 290:214–218.zbMATHADSGoogle Scholar
  127. 127.
    Stebbins, H.H., C. (1982). Cell. Tissue Res. 227:609–617.Google Scholar
  128. 128.
    Stenberg, E., Persson, B., Roos, H., and Urbaniczky, C. (1991). Journal of Colloid and Interface Science 143:513–526.Google Scholar
  129. 129.
    Tegmark, M., (2000). Phys. Rev. E 61:4194–42000.ADSGoogle Scholar
  130. 130.
    Thorne, R.E., Miller, J.H. Jr., Lyons, W.G., Lyding, J.W., and Tucker, J.R. (1985). Phys. Rev. Lett. 55:1006–1009.ADSGoogle Scholar
  131. 131.
    Togerson, T., Branning, S., Monken, M., and Mandel, A. (1995). Phys. Lett. A. 204:323–328.ADSGoogle Scholar
  132. 132.
    Tong, C., Kolomenskii, A.A., Lioubimov, V.A., Muthuchamy, M., Schuessler, H.A., Trache, A., and Granger, H. (2001). Biochemistry 40:13915–13924.Google Scholar
  133. 133.
    Tsue, Y.F., Y. (1991). Prog. Theor. Phys. 86:469.ADSMathSciNetGoogle Scholar
  134. 134.
    Tully, T.Q., W. (1985). J. Comp. Physiol. 157:263–277.Google Scholar
  135. 135.
    Van Buren, V., Odde, D.J., and Cassimeris, L. (2002). PNAS (USA) 99: 6035–6040.ADSGoogle Scholar
  136. 136.
    Van Gent, J., Lambeck, P.V., Kreuvel, J.J.M, Gerritsma, G.J., Sudhoelter, E.J.R., Reunhoudt, D.N., and Popma, T.J.A. (1990). Applied Optics 29:2843–2849.ADSGoogle Scholar
  137. 137.
    Vater, W., Bohm, K.J., and Unger, E. (1997). Cell Mobility and the Cytoskeleton 36:76–83.Google Scholar
  138. 138.
    Vogel, G. (1998). Science 280:123.Google Scholar
  139. 139.
    Weinkauf, R., Schanen, P., Yang, D., Soukara, S., and Schlag, E.W. (1995). J. Phys. Chem. 99:11255–11265.Google Scholar
  140. 140.
    Weisenberg, R.C. (1981). Cell Motility 1:485–498.Google Scholar
  141. 141.
    Wittman, C.W., Wszolek, M.F., Shulman, J.M., Salvaterra, P.M., Lewis, J., Hutton, M., and Feany, M.B. (2001). Science 293:711–714.Google Scholar
  142. 142.
    Woolf, N.J., Young, S.L., Johnson, G.V.W., and Fanselow, M.S. (1994). Neuro Report 5:1045–1048.Google Scholar
  143. 143.
    Woolf, N.J., Zinnerman, M.D., and Johnson, G.V. (1999). Brain Res. 821(1):241–249.Google Scholar
  144. 144.
    Wouternsen, H.B. (1999). Nature 402:507–510.ADSGoogle Scholar
  145. 145.
    Zettl, A.G., G. (1984). Phys. Rev. B. 29:755–767.ADSGoogle Scholar
  146. 146.
    Zhang, S. (2003). Nature Biotechnology 21(10):1171–1178.Google Scholar
  147. 147.
    Zurek, W.H. (1991). Physics Today 44(10):36–56.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Center for Biomedical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of PhysicsTexas A&M UniversityCollege StationUSA
  3. 3.Dept. of Physics and Texas Center for SuperconductivityUniversity of HoustonHoustonUSA
  4. 4.Institute of Molecular Biology and Genetics Biomedical SciencesResearch Centre “Alexander Fleming”VariGreece
  5. 5.Department of Physics Theoretical Physics GroupUniversity of LondonLondonUK
  6. 6.Department of BiochemistryUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  7. 7.Academy of AthensNatural Science DivisionAthensGreece

Personalised recommendations