Advertisement

Evolutionary Music and the Zipf-Mandelbrot Law: Developing Fitness Functions for Pleasant Music

  • Bill Manaris
  • Dallas Vaughan
  • Christopher Wagner
  • Juan Romero
  • Robert B. Davis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2611)

Abstract

A study on a 220-piece corpus (baroque, classical, romantic, 12-tone, jazz, rock, DNA strings, and random music) reveals that aesthetically pleasing music may be describable under the Zipf-Mandelbrot law. Various Zipf-based metrics have been developed and evaluated. Some focus on music-theoretic attributes such as pitch, pitch and duration, melodic intervals, and harmonic intervals. Others focus on higher-order attributes and fractal aspects of musical balance. Zipf distributions across certain dimensions appear to be a necessary, but not sufficient condition for pleasant music. Statistical analyses suggest that combinations of Zipf-based metrics might be used to identify genre and/or composer. This is supported by a preliminary experiment with a neural network classifier. We describe an evolutionary music framework under development, which utilizes Zipf-based metrics as fitness functions.

Keywords

Fractal Dimension Interval Graph Relative Balance Composite Metrics Neural Network Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamic, L.A.: “Zipf, Power-laws, and Pareto — a Ranking Tutorial” (1999) http://ginger.hpl.hp.com/shl/papers/ranking/
  2. 2.
    Balaban, M., Ebcioğlu, K., and Laske, O., (eds.): Understanding Music with AI: Perspectives on Music Cognition. Cambridge: AAAI Press/MIT Press (1992)Google Scholar
  3. 3.
    Cope, D.: Virtual Music, MIT Press Cambridge (2001)Google Scholar
  4. 4.
    Howat, R.: Debussy in Proportion. Cambridge University Press (cited in [16]) Cambridge (1983)Google Scholar
  5. 5.
    Knott, R.: “Fibonacci Numbers and Nature”. http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html (2002)
  6. 6.
    Li, W.: “Zipf’s Law”. http://linkage.rockefeller.edu/wli/zipf/ (2002)
  7. 7.
    Machado, P., Cardoso, A.: “All the truth about NEvAr”. Applied Intelligence, Special issue on Creative Systems, Bentley, P., Corne, D. (eds), 16(2), (2002), 101–119Google Scholar
  8. 8.
    Manaris, B., Purewal, T., and McCormick, C.: “Progress Towards Recognizing and Classifying Beautiful Music with Computers”. 2002 IEEE SoutheastCon, Columbia, SC (2002) 52–57Google Scholar
  9. 9.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman New York (1977)Google Scholar
  10. 10.
    Marillier, C.G.: “Computer Assisted Analysis of Tonal Structure in the Classical Symphony”. Haydn Yearbook 14 (1983) 187–199 (cited in [16])Google Scholar
  11. 11.
    May, M.: “Did Mozart Use the Golden Section?”. American Scientist 84(2). http://www.sigmaxi.org/amsci/issues/Sciobs96/Sciobs96-03MM.html (1996)
  12. 12.
    Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press Chicago (1956)Google Scholar
  13. 13.
    Meyer, L.B.: “Music and Emotion: Distinctions and Uncertainties”. In Music and Emotion — Theory and Research, Juslin, P.N., Sloboda, J.A. (eds), Oxford University Press Oxford (2001) 341–360Google Scholar
  14. 14.
    Miranda, E.R.: Composing Music with Computers. Focal Press Oxford (2001)Google Scholar
  15. 15.
    Nettheim, N.: “On the Spectral Analysis of Melody”. Interface: Journal of New Music Research 21 (1992) 135–148CrossRefGoogle Scholar
  16. 16.
    Nettheim, N.: “A Bibliography of Statistical Applications in Musicology”. Musicology Australia 20 (1997) 94–106Google Scholar
  17. 17.
    Pareto, V.: Cours d’Economie Politique, Rouge (Lausanne et Paris) (1897) Cited in [9]Google Scholar
  18. 18.
    Salingaros, N..A., and West, B.J.: “A Universal Rule for the Distribution of Sizes”. Environment and Planning B(26) (1999) 909–923Google Scholar
  19. 19.
    Schroeder, M.: Fractals, Chaos, Power Laws. W.H. Freeman New York (1991)zbMATHGoogle Scholar
  20. 20.
    Stuttgart Neural Network Simulator (SNNS), http://www-ra.informatik.uni-tuebingen.de/SNNS/).
  21. 21.
    Taylor, R.P., Micolich, A.P., and Jonas, D.: “Fractal Analysis Of Pollock’s Drip Paintings”. Nature, vol. 399, (1999), 422http://materialscience.uoregon.edu/taylor/art/Nature1.pdf CrossRefGoogle Scholar
  22. 22.
    The Classical Music Archives. http://www.classicalarchives.com.
  23. 23.
    Voss, R.F., and Clarke, J.: “1/f Noise in Music and Speech”. Nature 258 (1975) 317–318CrossRefGoogle Scholar
  24. 24.
    Voss, R.F., and Clarke, J.: “1/f Noise in Music: Music from 1/f Noise”. Journal of Acoustical Society of America 63(1) (1978) 258–263CrossRefGoogle Scholar
  25. 25.
    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley New York (1972) (original publication Hafner Publishing Company, 1949)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bill Manaris
    • 1
  • Dallas Vaughan
    • 1
  • Christopher Wagner
    • 1
  • Juan Romero
    • 2
  • Robert B. Davis
    • 3
  1. 1.Computer Science DepartmentCollege of CharlestonCharlestonUSA
  2. 2.Creative Computer Group - RNASA Lab - Faculty of Computer ScienceUniversity of A CoruñaSpain
  3. 3.Department of Mathematics and StatisticsMiami UniversityHamiltonUSA

Personalised recommendations