Fitness Distance Correlation in Structural Mutation Genetic Programming

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2610)


A new kind of mutation for genetic programming based on the structural distance operators for trees is presented in this paper. We firstly describe a new genetic programming process based on these operators (we call it structural mutation genetic programming). Then we use structural distance to calculate the fitness distance correlation coefficient and we show that this coefficient is a reasonable measure to express problem difficulty for structural mutation genetic programming for the considered set of problems, i.e. unimodal trap functions, royal trees and MAX problem.


Genetic Programming Genetic Operator Fitness Landscape Structural Distance Structural Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Altenberg. Fitness distance correlation analysis: an instructive counterexample. In T. Back, editor, Seventh International Conference on Genetic Algorithms, pages 57–64. Morgan Kaufmann, 1997.Google Scholar
  2. 2.
    P. J. Angeline. Subtree crossover: Building block engine or macromutation? In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 9–17, Stanford University, CA, USA, 1997. Morgan Kaufmann.Google Scholar
  3. 3.
    E. Burke, S. Gustafson, G. Kendall, and N. Krasnogor. Advanced population diversity measures in genetic programming. In J. J. Merelo, P. Adamidis, H. G. Beyer, J.-L. Fernández-Villacanas, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature-PPSN VII, volume 2439 of Lecture Notes in Computer Science, pages 341–350. Springer-Verlag, Heidelberg, 2002.CrossRefGoogle Scholar
  4. 4.
    K. Chellapilla. Evolutionary programming with tree mutations: Evolving computer programs without crossover. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 431–438, Stanford University, CA, USA, 1997. Morgan Kaufmann.Google Scholar
  5. 5.
    M. Clergue, P. Collard, M. Tomassini, and L. Vanneschi. Fitness distance correlation and problem difficulty for genetic programming. In Proceedings of the genetic and evolutionary computation conference GECCO’02, pages 724–732, San Francisco, CA, 2002. Morgan Kaufmann.Google Scholar
  6. 6.
    P. Collard, M. Clergue, and F. Bonnin. Misleading functions designed from alternation. In Congress on Evolutionary Computation (CEC’2000), pages 1056–1063. IEEE Press, Piscataway, NJ, 2000.Google Scholar
  7. 7.
    P. Collard, A. Gaspar, M. Clergue, and C. Escazut. Fitness distance correlation as statistical measure of genetic algorithms difficulty, revisited. In European Conference on Artificial Intelligence (ECAI’98), pages 650–654, Brighton, 1998. John Witley & Sons, Ltd.Google Scholar
  8. 8.
    K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In D. Whitley, editor, Foundations of Genetic Algorithms, 2, pages 93–108. Morgan Kaufmann, 1993.Google Scholar
  9. 9.
    A. Ekárt and S. Z. Németh. Maintaining the diversity of genetic programs. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi, editors, Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 162–171, Kinsale, Ireland, 3–5 April 2002. Springer-Verlag.Google Scholar
  10. 10.
    C. Gathercole and P. Ross. An adverse interaction between crossover and restricted tree depth in genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 291–296, Stanford University, CA, USA, 28–31 July 1996. MIT Press.Google Scholar
  11. 11.
    T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, Uiversity of New Mexico, Albuquerque, 1995.Google Scholar
  12. 12.
    R. Keller and W. Banzhaf. Explicit maintenance of genotypic diversity on genospaces. Unpublished, 1994.
  13. 13.
    W. B. Langdon and R. Poli. An analysis of the max problem in genetic programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference on Genetic Programming, pages 222–230, San Francisco, CA, 1997. Morgan Kaufmann.Google Scholar
  14. 14.
    N.F. McPhee and N.J. Hopper. Analysis of genetic diversity through population history. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1112–1120, Orlando, Florida, USA, 13–17 July 1999. Morgan Kaufmann.Google Scholar
  15. 15.
    U.-M. O’Reilly. An Analysis of Genetic Programming. PhD thesis, Carleton University, Ottawa, Ontario, Canada, 1995.Google Scholar
  16. 16.
    B. Punch, D. Zongker, and E. Goodman. The royal tree problem, a benchmark for single and multiple population genetic programming. In P. Angeline and K. Kinnear, editors, Advances in Genetic Programming 2, pages 299–316, Cambridge, MA, 1996. The MIT Press.Google Scholar
  17. 17.
    R.J. Quick, V.J. Rayward-Smith, and G.D. Smith. Fitness distance correlation and ridge functions. In Fifth Conference on Parallel Problems Solving from Nature (PPSN’98), pages 77–86. Springer-Verlag, Heidelberg, 1998.Google Scholar
  18. 18.
    V. Slavov and N. I. Nikolaev. Fitness landscapes and inductive genetic programming. In Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA97), University of East Anglia, Norwich, UK, 1997. Springer-Verlag KG, Vienna.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Computer Science InstituteUniversity of LausanneLausanneSwitzerland
  2. 2.I3S LaboratoryUniversity of NiceSophia AntipolisFrance

Personalised recommendations