Tree Supported Road Extraction from Arial Images Using Global and Local Context Knowledge

  • Matthias Butenuth
  • Bernd-M. Straub
  • Christian Heipke
  • Felicitas Willrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2626)

Abstract

The quality control and update of geo-data, in this case especially of road-data, is the primary aim of the system, which is presented in the paper. One important task of the system is the automatic extraction of roads from aerial images. Structural knowledge about the scene, provided by existing information from a GIS database, is subdivided into global and local context knowledge. The “classical” global context approach was enhanced in such a way that additional context regions and relations were defined, mainly based on the different appearance of roads in these regions. Additionally, trees were added to the context model on the local level. After the extraction of rows of trees the road network is generated using this information as candidates for road segments. The rows of trees obtain evidence from the functional part of the road network model. Both extensions make the approach for road extraction more robust and more general, as is shown in various examples using 1:12500 panchromatic orthoimages.

Keywords

Remote Sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, A., Eckstein, W., Mayer, H., Heipke, C., Ebner, H.: Context-Supported Road Extraction. In: Gruen, A., Baltsavias, E. P., Henricsson, O. (eds.): Automatic Extraction of Man-Made Objects from Aerial and Space Images (II) Birkhäuser Verlag Basel Boston Berlin (1997) 299–308Google Scholar
  2. 2.
    Boichis, N., Viglino, J.-M., Cocquerez, J.-P.: Knowledge Based System for the Automatic Extraction of Road Intersections from Aerial Images. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, B3 (2000) 27–34Google Scholar
  3. 3.
    Busch, A., Willrich, F.: System Design for Automated Quality Control of Geodata by Integration of GIS and Imagery. In: International Archieves of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, Part 2, Commission II (2002) 53–58Google Scholar
  4. 4.
    Endrullis, M.: Bundesweite Geodatenbereitstellung durch das Bundesamt für Kartographie und Geodäsie (BKG). In: R. Bill and F. Schmidt (eds.): ATKIS — Stand und Fortführung. Beiträge zum 51. DVW-Seminar am 25. und 26.9.2000 an der Universität Rostock, Schriftenreihe des DVW, Band 39, Verlag Konrad Wittwer, Stuttgart (2000) 39–52Google Scholar
  5. 5.
    Gerke, M., Heipke, C., Straub, B.-M.: Building Extraction From Aerial Imagery Using a Generic Scene Model and Invariant Geometric Moments. In: Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, IEEE Piscataway (2001) 85–89Google Scholar
  6. 6.
    de Gunst, M., Vosselmann, G.: A Semantic Road Model for Arial Image Interpretation. In: Förstner, W., Plümer, L. (eds.): Semantic Modeling for the Acquisition of Topographic Information from Images and Maps, Birkhäuser Publishers Basel (1997) 107–122Google Scholar
  7. 7.
    Heipke C., Straub, B.-M.: Towards the Automatic GIS Update of Vegetation Areas from Satellite Imagery Using Digital Landscape Model as Prior Information. In: International Archieves of Photogrammetry and Remote Sensing, Vol. XXXII, Part 3-2W5 (1999) 167–174Google Scholar
  8. 8.
    Hinz, S., Baumgartner, A., Mayer, H., Wiedemann, C., Ebner, H.: Road Extraction Focussing on Urban Areas. In: Baltsavias, E., Gruen, L., van Gool, L. (eds.): Automatic Extraction of Man-Made Objects from Arial and Space Images (III), A.A. Balkema Publishers Lisse Abington Exton (PA) Tokio (2001) 255–265Google Scholar
  9. 9.
    Hinz, S., Baumgartner, A.: Urban Road Net Extraction Integrating Internal Evaluation Models. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, Part 3A, Commission III (2002) 163–168Google Scholar
  10. 10.
    Steger, C.: An Unbiased Detector of Curvilinear Structures. In: IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 20 No. 2 (1998) 113–125CrossRefGoogle Scholar
  11. 11.
    Straub, B.-M., Wiedemann, C., Heipke, C.: Towards the Automatic Interpretation of Images for GIS Update. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B2, Commission II (2000) 525–532Google Scholar
  12. 12.
    Wallace, S. J., Hatcher, M. J., Priestnall, G., Morton, R. D.: Research into a Framework for Automatic Linear Feature Identification and Extraction. In: Baltsavias, E., Gruen, L., van Gool, L. (eds.): Automatic Extraction of Man-Made Objects from Arial and Space Images (III), A.A. Balkema Publishers Lisse Abington Exton (PA) Tokio (2001) 381–390Google Scholar
  13. 13.
    Wiedemann, C.: Extraktion von Straßennetzen aus optischen Satellitenbildern. DGK Reihe C, No. 551 (2002)Google Scholar
  14. 14.
    Wiedemann, C., Ebner, H.: Automatic Completetion and Evaluating of Road Networks. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B3/2, Commission III (2000) 979–986Google Scholar
  15. 15.
    Willrich, F.: Quality Control and Updating of Road Data by GIS-Driven Road Extraction from Imagery. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, Part 4, Commission IV (2002) 761–767Google Scholar
  16. 16.
    Zhang, C., Baltsavias, E.: Improving Cartographic Road Databases by Image Analysis. In: International Achieves of Photogrammetry and Remote Sensing, Vol. XXXIV, Part 3A, Commission III (2002) 400–405Google Scholar
  17. 17.
    Zhang, C.: Updating of Cartographic Road Databases by Image Analysis. Ph. D. Dissertation, Report No. 79, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Matthias Butenuth
    • 1
  • Bernd-M. Straub
    • 1
  • Christian Heipke
    • 1
  • Felicitas Willrich
    • 1
  1. 1.Institute of Photogrammetry and GeoInformation (IPI)University of HannoverHannover

Personalised recommendations