Implementing the Expert Object Recognition Pathway

  • Bruce A. Draper
  • Kyungim Baek
  • Jeff Boody
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2626)


Brain imaging studies suggest that expert object recognition is a distinct visual skill, implemented by a dedicated anatomic pathway. Like all visual pathways, the expert recognition pathway begins with the early visual system (retina, LGN/SC, striate cortex). It is defined, however, by subsequent diffuse activation in the lateral occipital cortex (LOC), and sharp foci of activation in the fusiform gyrus and right inferior frontal gyrus. This pathway recognizes familiar objects from familiar viewpoints under familiar illumination. Significantly, it identifies objects at both the categorical and instance (subcategorical) levels, and these processes cannot be disassociated. This paper presents a four-stage functional model of the expert object recognition pathway, where each stage models one area of anatomic activation. It implements this model in an end-to-end computer vision system, and tests it on real images to provide feedback for the cognitive science and computer vision communities.


Face Recognition Recognition Rate Inferior Frontal Gyrus Gabor Filter Brain Imaging Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1.]
    I. Biederman, “Recognition-by-Components: A Theory of Human Image Understanding,” Psychological Review, vol. 94, pp. 115–147, 1987.CrossRefGoogle Scholar
  2. [2.]
    V. Bruce and A. Young, In the Eye of the Beholder: The Science of Face Perception. New York: Oxford University Press, 1998.Google Scholar
  3. [3.]
    H. H. Bülthoff and S. Edelman, “Psychophysical Support for a 2-D View Interpolation Theory of Object Recognition,” Proceedings of the National Academy of Science, vol. 89, pp. 60–64, 1992.CrossRefGoogle Scholar
  4. [4.]
    H. H. Bülthoff, C. Wallraven, and A. Graf, “View-based Dynamic Object Recognition based on Human Perception,” International Conference on Pattern Recognition, Quebec City, 2002.Google Scholar
  5. [5.]
    L. L. Chao, A. Martin, and J. V. Haxby, “Are face-responsive regions selective only for faces?,” NeuroReport, vol. 10, pp. 2945–2950, 1999.CrossRefGoogle Scholar
  6. [6.]
    V. P. Clark, K. Keil, J. M. Maisog, S. Courtney, L. G. Ungeleider, and J. V. Haxby, “Functional Magnetic Resonance Imaging of Human Visual Cortex during Face Matching: A Comparison with Positron Emission Tomography, ” NeuroImage, vol. 4, pp. 1–15, 1996.CrossRefGoogle Scholar
  7. [7.]
    B. J. Frey, A. Colmenarez, and T. S. Huang, “Mixtures of Local Linear Subspaces for Face Recognition, ” IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998.Google Scholar
  8. [8.]
    I. Gauthier and N. K. Logothetis, “Is Face Recognition Not So Unique After All?,” Cognitive Neuropsychology, vol. 17, pp. 125–142, 2000.CrossRefGoogle Scholar
  9. [9.]
    I. Gauthier, M. J. Tarr, A. W. Anderson, P. Skudlarski, and J. C. Gore, “Behavioral and Neural Changes Following Expertise Training,” Meeting of the Psychonomic Society, Philadelphia, 1997.Google Scholar
  10. [10.]
    J. V. Haxby, L. G. Ungerleider, V. P. Clark, J. L. Schouten, E. A. Hoffman, and A. Martin, “The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Recognition,” Neuron, vol. 22, pp. 189–199, 199.Google Scholar
  11. [11.]
    A. Ishai, L. G. Ungerleider, A. Martin, J. L. Schouten, and J. V. Haxby, “Distributed representation of objects in the human ventral visual pathway,” Science, vol. 96, pp. 9379–9384, 1999.Google Scholar
  12. [12.]
    L. Itti, “Modeling Primate Visual Attention,” in Computational Neuroscience: A Comprehensive Approach, J. Feng, Ed. Boca Raton, FL: CRC Press, 2002.Google Scholar
  13. [13.]
    N. Kambhatla and T. K. Leen, “Dimension Reduction by Local PCA,” Neural Computation, vol. 9, pp. 1493–1516, 1997.CrossRefGoogle Scholar
  14. [14.]
    N. Kanwisher, M. Chun, J. McDermott, and P. Ledden, “Functional Imaging of Human Visual Recognition,” Cognitive Brain Research, vol. 5, pp. 55–67, 1996.CrossRefGoogle Scholar
  15. [15.]
    S. M. Kosslyn, Image and Brain. Cambridge, MA: MIT Press, 1994.Google Scholar
  16. [16.]
    S. M. Kosslyn, A. Pascual-Leone, O. Felician, S. Camposano, J. P. Keenan, W. L. Thompson, G. Ganis, K. E. Sukel, and N. M. Alpert, “The Role of Area 17 in Visual Imagery: Convergent Evidence from PET and rTMS,” Science, vol. 284, pp. 167–170, 1999.CrossRefGoogle Scholar
  17. [17.]
    Z. Kourtzi and N. Kanwisher, “Cortical Regions Involved in Perceiving Object Shape,” The Journal of Neuroscience, vol. 20, pp. 3310–3318, 2000.Google Scholar
  18. [18.]
    T. S. Lee, D. Mumford, R. Romero, and V. A. F. Lamme, “The role of the primary visual cortex in higher level vision,” Vision Research, vol. 38, pp. 2429–2454, 1998.CrossRefGoogle Scholar
  19. [19.]
    D. G. Lowe, Perceptual Organization And Visual Recognition. Boston: Kluwer, 1985.Google Scholar
  20. [20.]
    E. Maguire, C. D. Frith, and L. Cipolotti, “Distinct Neural Systems for the Encoding and Recognition of Topography and Faces,” NeuroImage, vol. 13, pp. 743–750, 2001.CrossRefGoogle Scholar
  21. [21.]
    A. Maki, P. Nordlund, and J.-O. Eklundh, “Attentional Scene Segmentation: Integrating Depth and Motion from Phase,” Computer Vision and Image Understanding, vol. 78, pp. 351–373, 2000.CrossRefGoogle Scholar
  22. [22.]
    D. Marr, Vision. Cambridge, MA: Freeman, 1982.Google Scholar
  23. [23.]
    K. Nakamura, R. Kawashima, N. Sata, A. Nakamura, M. Sugiura, T. Kato, K. Hatano, K. Ito, H. Fukuda, T. Schormann, and K. Zilles, “Functional delineation of the human occipito-temporal areas related to face and scene processing: a PET study,” Brain, vol. 123, pp. 1903–1912, 2000.CrossRefGoogle Scholar
  24. [24.]
    A. Oliva and P. G. Schyns, “Coarse Blobs or Fine Edges? Evidence That Information Diagnoticity Changes the Perception of Complex Visual Stimuli,” Cognitive Psychology, vol. 34, pp. 72–107, 1997.CrossRefGoogle Scholar
  25. [25.]
    A. J. O’Toole, K. A. Deffenbacher, D. Valentin, and H. Abdi, “Structural Aspects of Face Recognition and the Other Race Effect,” Memory and Cognition, vol. 22, pp. 208–224, 1994.Google Scholar
  26. [26.]
    S. E. Palmer, Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press, 1999.Google Scholar
  27. [27.]
    D. Parkhurst, K. Law, and E. Neibur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Research, vol. 42, pp. 107–123, 2002.CrossRefGoogle Scholar
  28. [28.]
    D. A. Pollen, J. P. Gaska, and L. D. Jacobson, “Physiological Constraints on Models of Visual Cortical Function,” in Models of Brain Functions, M. Rodney and J. Cotterill, Eds. New York: Cambridge University Press, 1989, pp. 115–135.Google Scholar
  29. [29.]
    A. Puce, T. Allison, J. C. Gore, and G. McCarthy, “Face-sensitive regions in human extrastriate cortex studied by functional MRI,” Journal of Neurophysiology, vol. 74, pp. 1192–1199, 1995.Google Scholar
  30. [30.]
    J. W. Tanaka and T. Curran, “A Neural Basis for Expert Object Recognition,” Psychological Science, vol. 12, pp. 43–47, 2001.CrossRefGoogle Scholar
  31. [31.]
    M. J. Tarr and I. Gauthier, “FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise,” Neuroscience, vol. 3, pp. 764–769, 2000.Google Scholar
  32. [32.]
    M. E. Tipping and C. M. Bishop, “Mixtures of Probabilistic Principal Component Analysers,” Neural Computation, vol. 11, pp. 443–482, 1999.CrossRefGoogle Scholar
  33. [33.]
    F. Tong, K. Nakayama, M. Moscovitch, O. Weinrib, and N. Kanwisher, “Response Properties of the Human Fusiform Face Area,” Cognitive Neuropsychology, vol. 17, pp. 257–279, 2000.CrossRefGoogle Scholar
  34. [34.]
    L. G. Ungeleider and M. Mishkin, “Two cortical visual systems,” in Analysis of visual behavior, D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, Eds. Cambridge, MA: MIT Press, 1982, pp. 549–586.Google Scholar
  35. [35.]
    K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual Modulation in Primary Visual Cortex,” Neuroscience, vol. 16, pp. 7376–7389, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bruce A. Draper
    • 1
  • Kyungim Baek
    • 1
  • Jeff Boody
    • 1
  1. 1.Colorado State UniversityUSA

Personalised recommendations