Skip to main content

System tools applied to micro-cantilever based devices

  • Chapter
  • First Online:
Multidisciplinary Research in Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 289))

  • 367 Accesses

Abstract

Micro-cantilever based devices can be used to investigate and manipulate matter at atomic scales. Taking the case study of atomic force microscope (AFM) we demonstrate the power of system tools in the analysis of micro-cantilever based devices. They capture important characteristics and predict inherent limitations in the operation of these devices. Such a systems approach is shown to complement the physical studies performed on these devices. Tractable models are developed for the AFM operating in tapping-mode. For the interrogation of samples, it is also imperative that sample positioning should be done with high precision and at high speeds. This broadband nanopositioning problem is shown to fit into the modern robust control framework. This is illustrated by the design, identification and control of such a positioning device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Anczykowski, D. Kruger, K. L. Babcock, and H. Fuchs. Basic properties of dynamic force spectroscopy with scanning force microscope in experiment and simulation. Ultramicroscopy, 66:251, 1996.

    Article  Google Scholar 

  2. M. Ashhab, M. V. Salapaka, M. Dahleh, and I. Mezic. Dynamical analysis and control of micro-cantilevers. Automatica, 1999.

    Google Scholar 

  3. M. Ashhab, M. V. Salapaka, M. Dahleh, and I. Mezic. Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlinear Dynamics, November 1999.

    Google Scholar 

  4. M. Benoit, D. Gabriel, G. Gerisch, and H. E. Gaub. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biology, 2(6):pp. 313–317, 2000.

    Article  Google Scholar 

  5. N. A. Burnham, A. J. Kulik, G. Gremaud, and G. A. D. Briggs. Nanosubharmonics: the dynamics of small nonlinear contacts. Physics Review Letters, 74:5092–5059, 1995.

    Article  Google Scholar 

  6. N. A. et. al. Burnham. How does a tip tap? Nanotechnology, 8:pp. 67–75, 1997.

    Article  Google Scholar 

  7. U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H. J. Gntherodt. Specific antigen/antibody interactions measured by force microscopy. Biophysical Journal, 70:pp. 2437–2441, 1996.

    Article  Google Scholar 

  8. U. Durig. Conservative and dissipative interactions in dynamic force microscopy. Surface and Interface Analysis, 27:pp. 467–473., 1999.

    Article  Google Scholar 

  9. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Gntherodt, Ch. Gerber, and J. K. Gimzewski. Translating biomolecular recognition into nanomechanics. Science, 288:pp. 316–318, 2001.

    Article  Google Scholar 

  10. A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE Transactions on Automatic Control, 47, no.6:pp. 819–830., 1997.

    Article  MathSciNet  Google Scholar 

  11. A. Megretski and A. Rantzer. Harmonic analysis of nonlinear and uncertain systems. In Proceedings of the American Control Conference, Philadelphia, June 1998. Pensylvania.

    Google Scholar 

  12. M. Morari and E. Zafiriou. Robust Process Control. Prentice-Hall, Englewood Cliffs, 1989.

    Google Scholar 

  13. D. Rugar, C. S. Yannoni, and J. A. Sidles. Mechanical detection of magnetic resonance. Nature, 360:563–566, (1992).

    Article  Google Scholar 

  14. M. V. Salapaka, H. S. Bergh, J. Lai, A. Majumdar, and E. McFarland. Multimode noise analysis of cantilevers for scanning probe microscopy. Journal of Applied Physics, 81(6):2480–2487, 1997.

    Article  Google Scholar 

  15. M. V. Salapaka, D. Chen, and J. P. Cleveland. Linearity of amplitude and phase in tapping-mode atomic force microscopy. Physical Review B., 61, no. 2:pp. 1106–1115, Jan 2000.

    Article  Google Scholar 

  16. S. Salapaka, M. Dahleh, and I. Mezic. On the dynamics of a harmonic oscillator undergoing impacts with a vibrating platform. Nonlinear Dynamics, 24:pp. 333–358, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka. High bandwidth nano-positioner: A robust control approach. Review of Scientific Instruments, accepted 2002.

    Google Scholar 

  18. A. Sebastian and M. V. Salapaka. Analysis of periodic solutions in tapping-mode afm: An IQC approach. In International sysmposium on Mathematical Theory of Networks and Systems, Notre Dame, IN, August 2002.

    Google Scholar 

  19. A. Sebastian, M. V. Salapaka, D. J. Chen, and J. P. Cleveland. Harmonic and power balance tools for tapping-mode atomic force microscope. Journal of Applied Physics, 89, no.11:6473–6480, 2001.

    Article  Google Scholar 

  20. J. A. Sidles. Noninductive detection of single proton-magnetic resonance. Appl. Phys. Lett., 58(24):2854–2856, 1991.

    Article  Google Scholar 

  21. J. A. Sidles. Folded stern-gerlach experiment as a means for detecting nuclear magnetic resonance of individual nuclei. Phys. Rev. Lett., 68:1124–1127, 1992.

    Article  Google Scholar 

  22. J. A. Sidles, J. L. Garbini, and G. P. Drobny. The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging. Rev. Sci. Instrum., 63:3881–3899, 1992.

    Article  Google Scholar 

  23. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control, Analysis and Design. John Wiley and Sons, 1997.

    Google Scholar 

  24. R. Wiesendanger. Scanning Probe Microscopy and Spectroscopy. Cambridge University Press, 1998.

    Google Scholar 

  25. V. A. Yakubovic. The matrix-inequality method in the theory of the stability of nonlinear control systems. Avtomatika i Telemekhanika, vol.25, no.7:1017–1029, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sebastian, A., Salapaka, S., Salapaka, M.V. (2003). System tools applied to micro-cantilever based devices. In: Giarré, L., Bamieh, B. (eds) Multidisciplinary Research in Control. Lecture Notes in Control and Information Sciences, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36589-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36589-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00917-7

  • Online ISBN: 978-3-540-36589-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics