Fan Clouds - An Alternative to Meshes

  • Lars Linsen
  • Hartmut Prautzsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2616)


A fan cloud is a set of triangles that can be used to visualize and work with point clouds. It is fast to compute and can replace a triangular mesh representation: We discuss visualization, multiresolution reduction, refinement, and selective refinement. Algorithms for triangular meshes can also be applied to fan clouds. They become even simpler, because fans are not interrelated. This localness of fan clouds is one of their main advantages. No remeshing is necessary for local or adaptive refinement and reduction.


Point Cloud Computer Graphic Triangular Mesh IEEE Visualization Progressive Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, Claudio T. Silva: Point Set Surfaces. Proceedings of IEEE Conference on Visualization’ 01, 21–28, 2001.Google Scholar
  2. [2]
    Maria-Elena Algorri, Francis Schmitt: Surface reconstruction from unstructured 3d data. Computer Graphics Forum, Vol. 15 (1), 47–60, 1996.CrossRefGoogle Scholar
  3. [3]
    Marco Attene, Michela Spagnuolo: Automatic surface reconstruction from point sets in space. Computer Graphics Forum, Vol. 19 (3), 457–466, 2000.CrossRefGoogle Scholar
  4. [4]
    Chandrajit Bajaj, Fausto Bernardini, Guoliang Xu: Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans. Proceedings of SIGGRAPH’ 95, 109–118, 1995.Google Scholar
  5. [5]
    Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Clàudio Silva, Gabriel Taubin: The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics, Vol. 5 (4), 349–359, 1999.CrossRefGoogle Scholar
  6. [6]
    Wolfgang Boehm, Hartmut Prautzsch: Geometric Concepts for Geometric Design. AK Peters, Wellesley, 1994.Google Scholar
  7. [7]
    Jean-Daniel Boissonat: Geometric Structures for Three-Dimensional Shape Representation. ACM Transactions on Graphics, 266–286, 1984.Google Scholar
  8. [8]
    Swen Campagna, Hans-Peter Seidel: Generating and Displaying Progressive Meshes. Proceedings of 3D Image Analysis and Synthesis, Erlangen, 35–42, 1997.Google Scholar
  9. [9]
    Baoquin Chen, Minh Xuan Nguyen: POP: A Hybrid Point and Polygon Rendering System for Large Data Proceedings of IEEE Conference on Visualization’ 01, 45–52, 2001.Google Scholar
  10. [10]
    Jonathan D. Cohen, Marc Olano, Dinesh Manocha: Appearance-Preserving Simplification. Proceedings of SIGGRAPH’ 98, 115–122, 1998.Google Scholar
  11. [11]
    Jonathan D. Cohen, Daniel G. Aliaga, Weiqiang Zhang: Hybrid Simplification: Combining Multi-resolution Polygon and Point Rendering Proceedings of IEEE Conference on Visualization’ 01, 37–44, 2001.Google Scholar
  12. [12]
    Patricia Crossno, Edward Angel: Spiraling Edge: Fast Surface Reconstruction from PartiallyO rganized Sample Points Proceedings of IEEE Conference on Visualization’ 99, 1999.Google Scholar
  13. [13]
    Brian Curless, Marc Levoy: A Volumetric Method for Building Complex Models from Range Images. Proceedings of SIGGRAPH’ 96, New Orleans, LA, 4–9 August 1996.Google Scholar
  14. [14]
    L. De Floriani, P. Magillo, E. Puppo: VARIANT: A System for Terrain Modeling at Variable Resolution. Geoinformatica, Vol. 4(3), 287–315, 2000.zbMATHCrossRefGoogle Scholar
  15. [15]
    Mathieu Desbrun, Mark Meyer, Peter Schröder, Alan Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. Proceedings of SIGGRAPH’ 99, 1999.Google Scholar
  16. [16]
    M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Aldrich, M. Mineev-Weinstein: ROAMing terrain: real-time optimallyadapti ng meshes. Proceedings of IEEE Visualization’ 97, 81–88, 1997.Google Scholar
  17. [17]
    Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, Werner Stuetzle: Multiresolution Analysis of Arbitrary Meshes. Proceedings of SIGGRAPH’ 95, 1995.Google Scholar
  18. [18]
    H. Edelsbrunner, E. P. Mücke: Threedimensional alpha shapes. ACM Transactions on Computer Graphics, Vol. 13 (1), 43–72, 1994.zbMATHCrossRefGoogle Scholar
  19. [19]
    M. Gopi, S. Krishnan, C. T. Silva: Surface Reconstruction based on Lower Dimensional Localized DelaunayT riangulation. Computer Graphics Forum, Vol. 19 (3), 2000.Google Scholar
  20. [20]
    M. Gross, O. Staadt, R. Gatti: Efficient Triangular Surface Approximations using Wavelets and Quadtree Data Structures. IEEE Transactions on Visualization and Computer Graphics, Vol. 2 (2), 130–143, 1996.CrossRefGoogle Scholar
  21. [21]
    Igor Guskov, Wim Sweldens, Peter Schröder: Multiresolution Signal Processing for Meshes. Proceedings of SIGGRAPH’ 99, 1999.Google Scholar
  22. [22]
    Bernd Hamann: A data reduction scheme for triangulated surfaces. Computer Aided Geometric Design, Vol. 11, 197–214, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle: Surface Reconstruction from Unorganized Points. Computer Graphics, Vol. 26, 71–78, 1992.CrossRefGoogle Scholar
  24. [24]
    Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle: Mesh Optimization. Computer Graphics Proceedings, Annual Conference Series, Vol. 7, 19–26, 1993.Google Scholar
  25. [25]
    Hugues Hoppe: Progressive meshes. Proceedings of SIGGRAPH’ 96, 99–108, 1996.Google Scholar
  26. [26]
    Hugues Hoppe: View-dependent refinement of progressive meshes. Proceedings of SIGGRAPH’ 97, 189–198, 1997.Google Scholar
  27. [27]
    Hugues Hoppe: Smooth View-Dependent Level-of-Detail Control and its Application to Terrain Rendering. IEEE Visualization, 35–42., 1998.Google Scholar
  28. [28]
    Andreas Hubeli, Markus Gross: Multiresolution Methods for Non-Manifold Models. IEEE Transaction on Visualization and Computer Graphics, 2001.Google Scholar
  29. [29]
    Aravind Kalaiah, Amitabh Varshney: Differential Point Rendering. Rendering Techniques’ 01, S. J. Gortler and K. Myszkowski (edts.), Springer-Verlag, 139–150, 2001Google Scholar
  30. [30]
    Leif Kobbelt, Swen Campagna, Hans-Peter Seidel: Mesh Reduction Revisited. Universitat Erlangen, 1997.Google Scholar
  31. [31]
    Leif Kobbelt, Swen Campagna, Jens Vorsatz, Hans-Peter Seidel: Interactive Multi-Resolution Modeling on Arbitrary Meshes. Proceedings of SIGGRAPH’ 98, 1998.Google Scholar
  32. [32]
    Leif Kobbelt: Multiresolution techniques. To appear in: Farin, Hoschek, Kim (Edts.), “‘Handbook of Computer Aided Geometric Design”’, Elsevier.Google Scholar
  33. [33]
    P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, G. Turner: Real-time, continuous level of detail rendering of height fields. Proceedings of SIGGRAPH’ 96, 109–118, 1996.Google Scholar
  34. [34]
    Lars Linsen, Hartmut Prautzsch: Local Versus Global Triangulations. Proceedings f Eurographics’ 01, Short Presentations, Manchester, 257–263, 2001.Google Scholar
  35. [35]
    Lars Linsen: Oberflächenrepräsentation durch Punktwolken. Dissertation, Universität Karlsruhe, Verlag Shaker, Aachen, 2001.Google Scholar
  36. [36]
    Robert Mencl, Heinrich Müller: Graph-Based Surface Reconstruction Using Structures in Scattered Point Sets. Proceedings of Computer Graphics International’ 98, Hannover, 1998.Google Scholar
  37. [37]
    Robert Mencl, Heinrich Müller: Interpolation and Approximation of Surfaces from Three-Dimensional Scattered Data Points. State of the Art Report for EUROGRAPHICS’ 98, Lisbon, 1998.Google Scholar
  38. [38]
    Renato Pajarola: Large scale Terrain Visualization using the Restricted Quadtree Triangulation. Technical Report, ETH Zürich, Switzerland, 1998.Google Scholar
  39. [39]
    Mark Pauly, Markus Gross: Spectral Processing of Point-Sampled Geometry. Proceedings of SIGGRAPH’ 01, 2001.Google Scholar
  40. [40]
    Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, Markus Gross: Surfels: Surface Elements as Rendering Primitives. Proceedings of SIGGRAPH’ 00, 2000.Google Scholar
  41. [41]
    Stephan Preuß: Von Punktwolken zu Dreiecksnetzen. M. S. thesis, Universität Karlsruhe, Germany, 2002.Google Scholar
  42. [42]
    Chris Prince: Progressive Meshes for Large Models of Arbitrary Topology. M. S. thesis, University of Washington, Seattle, 2000.Google Scholar
  43. [43]
    S. Röttger, W. Heidrich, P. Slusallek, H.-P. Seidel: Real-Time Generation of Continuous Levels of Detail for Height Fields. Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization’ 98, 315–322, 1998.Google Scholar
  44. [44]
    Szymon Rusinkiewicz, Marc Levoy: QSplat: A Multiresolution Point Rendering System for Large Meshes. Proceedings of SIGGRAPH’ 00, 2000.Google Scholar
  45. [45]
    Eric J. Stollnitz, Tony D. DeRose, David H. Salesin: Wavelets for Computer Graphics: Theoryand Applications. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling, Brian A. Barsky, Series Editor, 1996.Google Scholar
  46. [46]
    Julie C. Xia, Amitabh Varshney: Dynamic View-Dependent Simplification for Polygonal Models. Proceedings of the IEEE Visualization’ 96, 327–334, 1996.Google Scholar
  47. [47]
    Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, Markus Gross: Surface Splatting. Proceedings of SIGGRAPH’ 01, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Lars Linsen
    • 1
  • Hartmut Prautzsch
    • 2
  1. 1.Center for Image Processing and Integrated Computing (CIPIC)University of CaliforniaDavis
  2. 2.Institut für Betriebs- und Dialogsysteme (IBDS)Universität KarlsruheGermany

Personalised recommendations