Skip to main content

Denoising Images: Non-linear Leap-Frog for Shape and Light-Source Recovery

  • Conference paper
  • First Online:
Geometry, Morphology, and Computational Imaging

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

In 3-source photometric stereo, a Lambertian surface is illuminated from 3 known independent light-source directions, and photographed to give 3 images. The task of recovering the surface reduces to solving systems of linear equations for the gradients of a bivariate function u whose graph is the visible part of the surface [9], [16], [17], [24]. In the present paper we consider the same task, but with slightly more realistic assumptions: the photographic images are contaminated by Gaussian noise, and light-source directions may not be known. This leads to a non-quadratic optimization problem with many independent variables, compared to the quadratic problems resulting from addition of noise to the gradient of u and solved by linear methods in [6], [10], [20], [21], [22], [25]. The distinction is illustrated in Example below. Perhaps the most natural way to solve our problem is by global Gradient Descent, and we compare this with the 2-dimensional Leap-Frog Algorithm [23]. For this we review some mathematical results of [23] and describe an implementation in sufficient detail to permit code to be wrtten. Then we give examles comparing the behavior of Leap-Frog with GradientDescent, and explore an extension of Leap-Frog (not covered in [23]) to estimate light source directions when these are not given, as well as the reflecting surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belhumeur P. N., Kriegman D. J., Yuille A. L. (1999) The bas-relief ambiguity. Int. J. Comp. Vis., 35 (1):33–44.

    Article  Google Scholar 

  2. Ciarlet P. G. (1989) Introduction to Numerical Linear Algebra and Optimization. Camridge Uni. Press, Cambridge.

    Google Scholar 

  3. Drbohlav O., Šara R. (2001) Unambiguous determination of shape from photometric stereo with unknown light sources. Proc. 8th Int. IEEE Conf. Comp. Vision, Vancouver, Canada, July 7–14, 2001, IEEE Vol. 2, 581–586.

    Google Scholar 

  4. Drbohlav O., Šara R. (2002) Specularities reduce ambiguities of uncalibrated photometric stereo. In: Heyden A., Sparr G., Nielsen M., Johansen P. (eds) Proc. 7th European Conf. Comp. Vision, Copenhagen, Denmark, May 28–31, 2002, Springer LNCS 2351, Vol. 2, 46–60.

    Google Scholar 

  5. Fan J., Wol. L. B. (1997) Surface curvature and shape reconstruction from unknown multiple illumination and integrability. Comp. Vis. Imag. Understanding, 65 (2):347–359.

    Article  Google Scholar 

  6. Frankot R. T., Chellappa R. (1988) A method of enforcing integrability in shape from shading algorithms. IEEE, 10 (4):439–451.

    MATH  Google Scholar 

  7. Hackbush W. (1994) Iterative Solution of Large Sparse Systems of Equations. Springer, New York, Heidelberg, Berlin.

    Google Scholar 

  8. Hayakawa H. (1994) Photometric stereo under a light source with arbitrary motion. J. Opt. Soc. Amer. A, 11 (11):3079–3089.

    Article  MathSciNet  Google Scholar 

  9. Horn B. K. P. (1986) Robot Vision. McGraw-Hill, New York Cambridge, MA. 419, 420

    Google Scholar 

  10. Horn B. K. P. (1990) Height and gradient from shading. Int. J. Comp. Vis., 5 (1):37–75.

    Article  Google Scholar 

  11. Horn B. K. P., Brooks M. J. (1989) Shape from Shading. MIT Press, Cambridge, MA.

    Google Scholar 

  12. Hurt N. E. (1991) Mathematical methods in shape-from-shading: a review of recent results. Acta Appl. Math., 23:163–188.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaya C.Y., Noakes L. (1998) A Leap-Frog Algorithm and optimal control: theoretical aspects. In: Caccetta L., Teo K. L., Siew P. F., Leung Y. H., Jennings L. S., Rehbock V. (eds) Proc. 2nd Int. Conf. Optim. Tech. Appl., Perth, Australia, July 1–3, 1998, Curtin Uni. Techology, 843–850.

    Google Scholar 

  14. Kelly C. T. (1999) Iterative Methods for Optimization, Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  15. Klette R., Schlüns K. R., Koschan A. (1998) Computer Vision-Three Dimensional Data from Images. Springer, Singapore.

    MATH  Google Scholar 

  16. Kozera R. (1991) Existence and uniqueness in photometric stereo. Appl. Math. Comput., 44 (1):1–104.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kozera R. (1992) On shape recovery from two shading patterns. Int. J. Patt. Rec. Art. Intel., 6 (4):673–698.

    Article  Google Scholar 

  18. Milnor J. (1963) Morse Theory. Princeton University Press, Princeton New Jersey.

    MATH  Google Scholar 

  19. Noakes L. (1999) A global algorithm for geodesics. J. Math. Australian Soc. Series A., 64:37–50.

    Google Scholar 

  20. Noakes L., Kozera R. (2001) The 2-D Leap-Frog, noise, and digitization. In: Bertrand G., Imiya A., Klette R. (eds) Digital and Image Geometry, Springer, LNCS 2243, 352–364.

    Chapter  Google Scholar 

  21. Noakes L., Kozera R., Klette R. (1999) The Lawn-Mowing Algorithm for noisy gradient vector fields. In: Latecki L. J., Melter R. A., Mount D. M., Wu A. Y. (eds) Proc. SPIE Conf., Vis. Geom. VIII, Denver, USA, July 19–20, 1999, The Int. Soc. Opt. Engineering, 3811:305–316.

    Google Scholar 

  22. Noakes L., Kozera R. (1999) A 2-D Leap-Frog Algorithm for optimal surface reconstruction. In: Latecki L. J., Melter R. A., Mount D. M., Wu A. Y. (eds) Proc. SPIE Conf., Vis. Geom. VIII, Denver, USA, July 19–20, 1999, The Int. Soc. Opt. Engineering, 3811:317–328.

    Google Scholar 

  23. Noakes L., Kozera R. Nonlinearities and noise reduction in 3-source photometric stereo. Int. J. Math. Imag. Vis., in press. 419, 420, 421, 422, 423, 426 436 Lyle Noakes and Ryszard Kozera

    Google Scholar 

  24. Onn R., Bruckstein A. (1990) Integrability disambiguates surface recovery in two-image photometric stereo. Int. J. Comp. Vis., 5 (1):105–113.

    Article  Google Scholar 

  25. Simchony T., Chellappa R., Shao M. (1990) Direct analytical methods for solving Poisson Equations in computer vision problems. IEEE Trans. Patttern Rec. Machine Intell., 12 (5):435–446.

    Article  Google Scholar 

  26. Yuille A. L., Snow D. (1997) Shape and albedo from multiple images using integrability. Proc. IEEE Conf. Comp. Vis. Patt. Rec., 158–164.

    Google Scholar 

  27. Zubrzycki S. (1970) Lectures in Probability Theory and Mathematical Statistics. American Elsevier Publishing Company Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noakes, L., Kozera, R. (2003). Denoising Images: Non-linear Leap-Frog for Shape and Light-Source Recovery. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics