Discrepancy-Based Digital Halftoning: Automatic Evaluation and Optimization

  • Kunihiko Sadakane
  • Nadia Takki Chebihi
  • Takeshi Tokuyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2616)


Digital halftoning is a problem of computing a binary image approximating an input gray (or color) image. We consider two problems on digital halftoning: mathematical evaluation of a halftoning image and design of optimization-based halftoning algorithms. We propose an efficient automatic evaluation system of halftoning images by using quality evaluation functions based on discrepancy measures. Our experimental results on the evaluation system infer that the discrepancy corresponding to a regional error is a good evaluation measurement, and thus we design algorithms to reduce this discrepancy measure.


Digital halftoning Discrepancy Rounding Quality evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Asano, “Digital Halftoning: Challenges of Algorithm Engineers”, IEICE TRANS. Fundamentals, vol. E02-D, NO. 5 May 2002.Google Scholar
  2. [2]
    T. Asano, N. Katoh, K. Obokata, T. Tokuyama, “Matrix Rounding under the L p-DiscrepancyMeasure and Its Application to Digital Halftoning,” Proc. 13th ACMSIAM Symp. on Discrete Algorithms, 2002, pp.896–904.Google Scholar
  3. [3]
    T. Asano, T. Matsui, and T. Tokuyama: “Optimal Roundings of Sequences and Matrices,” Nordic Journal of Computing, 7–3 (2000), pp. 241–256.MathSciNetGoogle Scholar
  4. [4]
    J. Beck and V.T. Sös, Discrepancy Theory, in Handbook of Combinatorics Volume II, (ed. R. Graham, M. Grötschel, and L Lovász 1995, Elsevier.Google Scholar
  5. [5]
    J. Bentley, “Programming Pearls,” CACM 27 (1984), 865–871. 303Google Scholar
  6. [6]
    Donald E. Knuth, “Digital Halftones by Dot Diffusion”, ACM Transactions on Graphics 6 (1987) pp. 245–273.zbMATHCrossRefGoogle Scholar
  7. [7]
    R.W. Floyd and L. Steinberg: “An adaptive algorithm for spatial gray scale,” SID 75 Digest, Society for Information Display (1975), pp. 36–37.Google Scholar
  8. [8]
    N. Takki-Chebihi, “Discrepancy-Based Digital Halftoning: Automatic Evaluation and Optimization,” Master thesis, GSIS Tohoku University. In preparation for a journal pubilication.Google Scholar
  9. [9]
    P. Raghavan and C. Thompson, “Randomized Rounding,” Combinatorica 7 (1987), pp. 365–374.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    K. Sadakane, N. Takki-Chebihi, T. Tokuyama, “Combinatorics and Algorithms on Low-Discrepancy Roundings of a Real Sequences”, Proc. 28th ICALP, LNCS 2076 (2001), pp. 166–177.Google Scholar
  11. [11]
    V. Rödl and P. Winkler: “Concerning a Matrix Approximation Problem”, Crux Mathmaticorum (1990), pp. 76–79.Google Scholar
  12. [12]
    L. Velho and J. Gomes: “Digital Halftoning with Space Filling Curves”, Proc. SIGGRAPH’91 (1991), pp. 81–90.Google Scholar
  13. [13]
    I. Witten and N. Neal, “Using Peano Curves for Bilevel Display of Continuous-Tone Images”, IEEE Computer Graphics and Applications (1982), pp. 47–52.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kunihiko Sadakane
    • 1
  • Nadia Takki Chebihi
    • 1
  • Takeshi Tokuyama
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversityJapan

Personalised recommendations