Inverse Quantization for Resolution Conversion

  • A. Torii
  • T. Ichinose
  • Y. Wakazono
  • A. Imiya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2616)


In this paper, we introduce a resolution-conversion method for two- and three-dimensional discrete objects. We first derive a method for boundary extraction, second, introduce a method for the estimation of a smooth boundary, and third, construct an algorithm for resolution conversion.


Control Point Boundary Curve Discrete Space Discrete Object Terrain Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Imiya, A., Eckhardt, U., Curvature flow in discrete space, Lecture Notes in Computer Science, 2001, Vol. 2243, 229–249.Google Scholar
  2. [2]
    Isomichi, Y., Inverse-quantization method for digital signals and images: Pointapproximation type, Trans. IECE, 63A, 815–821, 1980.Google Scholar
  3. [3]
    Terzopoulos, D., The computation of visible-surface representations, IEEE, Trans, PAMI, 10, 417–438, 1988.zbMATHGoogle Scholar
  4. [4]
    Lu, F., Milios, E. E., Optimal spline fitting to plane shape, Signal Processing 37 129–140, 1994.CrossRefGoogle Scholar
  5. [5]
    Wahba, G., Surface fitting with scattered noisy data on Euclidean D-space and on the sphere, Rocky Mountain Journal of Mathematics, 14, 281–299, 1984.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Wahba, G., Johnson, D.R., Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two-and threedimensional objective analysis, J. Atmospheric and Oceanic Technology, 3, 714–725, 1986.CrossRefGoogle Scholar
  7. [7]
    Chen, M. H., Chin, R.T., Partial smoothing spline for noisy+boundary with corners, IEEE Trans. PAMI, 15, 1208–1216, 1993.Google Scholar
  8. [8]
    Paglieroni, D., Jain, A.K., Control point transformation for shape representation and measurement, Computer Graphics and Image Processing, 42, 87–111, 1988.CrossRefGoogle Scholar
  9. [9]
    Medioni, G., Yasumoto, Y., Corner detection and curve representation using cubic B-spline, Computer Graphics and Image Processing, 39, 267–278, 1987.CrossRefGoogle Scholar
  10. [10]
    Langridge, D. J., Curve encoding and the detection of discontinuities, Computer Graphics and Image Processing, 20, 58–71, 1982.CrossRefGoogle Scholar
  11. [11]
    Daubechies, I., Guskov, I., Sweldens, W., Regularity of irregular subdivision, Constructive Approximation, 15, 381–426, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Daubechies, I., Guskov, I., Schröder, P., Sweldens, W., Wavelets on irregular point sets, Phil. Trans. R. Soc. Lond. A, to be published.Google Scholar
  13. [13]
    Imiya, A., Ito, A., Kenmochi, Y., Inverse quantization of digital binary images for resolution conversion, LNCS 2106 Springer: Berlin, 426–434.Google Scholar
  14. [14]
    Boechm, W., Prautzsch, H., Numerical Methods, AK Peters, MA, 1992.Google Scholar
  15. [15]
    Fisher, M., On hearing the shape of a dram, Journal of Combinatorial Theory, 1, pp.105–125, 1966.zbMATHCrossRefGoogle Scholar
  16. [16]
    Collatz, L.,Eigenwertaufgeben mit Technichen Anwendungen, Akademische Verlagsgesellshaft, Leipzig 1949.Google Scholar
  17. [17]
    Collatz, L., Sinogowitz, U., Spektren sndicher Grafen, Abhandlungen aus dem Mathematischen Seminar der Universtaet Hamburg, Band 21, pp.63–77, 1957.zbMATHMathSciNetGoogle Scholar
  18. [18]
    Collatz, L.,Numerische Behandlung von Differntalgleichhaungen, Springer, Berlin, 1955. 290 English translation: The Numerical Treatment of Differential Equations, Springer, Berlin, 1960.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Torii
    • 1
  • T. Ichinose
    • 1
  • Y. Wakazono
    • 1
  • A. Imiya
    • 2
    • 3
  1. 1.School of Science and TechnologyChiba UniversityJapan
  2. 2.National Institute of InformaticsJapan
  3. 3.Institute of Media and Information Technology, Chiba UniversityJapan

Personalised recommendations