Observability of Linear Hybrid Systems

  • René Vidal
  • Alessandro Chiuso
  • Stefano Soatto
  • Shankar Sastry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2623)

Abstract

We analyze the observability of the continuous and discrete states of continuous-time linear hybrid systems. For the class of jumplinear systems, we derive necessary and sufficient conditions that the structural parameters of the model must satisfy in order for filtering and smoothing algorithms to operate correctly. Our conditions are simple rank tests that exploit the geometry of the observability subspaces. For linear hybrid systems, we derive weaker rank conditions that are sufficient to guarantee the uniqueness of the reconstruction of the state trajectory, even when the individual linear systems are unobservable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Alessandri and P. Coletta. Design of Luenberger observers for a class of hybrid linear systems. In Hybrid Systems: Computation and Control, volume 2034 of LNCS, pages 7–18. Springer Verlag, 2001.CrossRefGoogle Scholar
  2. [2]
    A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-Vincentelli. Design of observers for hybrid systems. In Hybrid Systems: Computation and Control, volume 2289 of LNCS, pages 76–89. Springer Verlag, 2002.CrossRefGoogle Scholar
  3. [3]
    A. Bemporad, G. Ferrari, and M. Morari. Observability and controllability of piecewise affine and hybrid systems. IEEE Transactions on Automatic Control, 45(10):1864–1876, October 2000.MATHCrossRefGoogle Scholar
  4. [4]
    K. De Cock and B. De Moor. Subspace angles and distances between ARMA models. In Proc. of Mathematical Theory of Networks and Systems, 2000.Google Scholar
  5. [5]
    E. Costa and J. do Val. On the detectability and observability for continuoustime Markov jump linear systems. In Proc. of IEEE Conference on Decision and Control, 2001.Google Scholar
  6. [6]
    J. Ezzine and A. H. Haddad. Controllability and observability of hybrid systems. International Journal of Control, 49(6):2045–2055, 1989.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    C. Francq and J. Zakoïan. Stationarity of multivariate Markov-switching ARMA models. Journal of Econometrics, 102:339–364, 2001.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Hespanha, D. Liberzon, and E. Sontag. Nonlinear observability and an invariance principle for switched systems. In Proc. of IEEE Conference on Decision and Control, pages 4300–4305, 2002.Google Scholar
  9. [9]
    I. Hwang, H. Balakrishnan, and C. Tomlin. Observability criteria and estimator design for stochastic linear hybrid systems. In Proc. of European Control Conference, 2003. Submitted.Google Scholar
  10. [10]
    T. Kailath. Linear Systems. Prentice Hall, 1980.Google Scholar
  11. [11]
    C. Özveren and A. Willsky. Observability of discrete event dynamic systems. IEEE Transactions on Automatic Control, 35:797–806, 1990.MATHCrossRefGoogle Scholar
  12. [12]
    P. Ramadge. Observability of discrete-event systems. In Proc. of IEEE Conference on Decision and Control, pages 1108–1112, 1986.Google Scholar
  13. [13]
    A. Sun, S. S. Ge, and T. H. Lee. Controllability and reachability criteria for switched linear systems. Automatica, 38:775–786, 2002.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    F. Szigeti. A differential algebraic condition for controllability and observability of time varying linear systems. In Proc. of IEEE Conference on Decision and Control, pages 3088–3090, 1992.Google Scholar
  15. [15]
    J. K. Tugnait. Adaptive estimation and identification for discrete systems with Markov jump parameters. IEEE Transactions on Automatic Control, 27(5):1054–1065, 1982.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. Vidal, A. Chiuso, and S. Soatto. Observability and identifiability of jump linear systems. In Proc. of IEEE Conference on Decision and Control, pages 3614–3619, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • René Vidal
    • 1
  • Alessandro Chiuso
    • 2
  • Stefano Soatto
    • 3
  • Shankar Sastry
    • 1
  1. 1.Department of EECSUniversity of CaliforniaBerkeleyUSA
  2. 2.Dipartimento di Ingegneria dell’InformazioneUniversità di PadovaItaly
  3. 3.Department of CSUniversity of CaliforniaLos AngelesUSA

Personalised recommendations