Advertisement

Finite Differencing of Logical Formulas for Static Analysis

  • Thomas Reps
  • Mooly Sagiv
  • Alexey Loginov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2618)

Abstract

This paper concerns mechanisms for maintaining the value of an instrumentation predicate (a.k.a. derived predicate or view), defined via a logical formula over core predicates, in response to changes in the values of the core predicates. It presents an algorithm for transforming the instrumentation predicate’s defining formula into a predicate-maintenance formula that captures what the instrumentation predicate’s new value should be.

This technique applies to program-analysis problems in which the semantics of statements is expressed using logical formulas that describe changes to corepredicate values, and provides a way to reflect those changes in the values of the instrumentation predicates.

Keywords

Transitive Closure Logical Formula Abstract Interpretation Predicate Symbol Predicate Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    S.B. Akers, Jr. On a theory of Boolean functions. J. Soc. Indust. Appl. Math., 7(4):487–498, December 1959.zbMATHCrossRefGoogle Scholar
  2. 3.
    T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction of C programs. In Conf. on Prog. Lang. Design and Impl., NewYork, NY, 2001. ACM Press.Google Scholar
  3. 4.
    P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Symp. on Princ. of Prog. Lang., pages 269–282, NewYork, NY, 1979. ACM Press.Google Scholar
  4. 5.
    S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In Proc. Computer-Aided Verif., pages 160–171. Springer-Verlag, July 1999.Google Scholar
  5. 6.
    G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by first-order queries. Inf. and Comp., 120:101–106, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 7.
    G. Dong and J. Su. Incremental maintenance of recursive views using relational calculus/SQL. SIGMOD Record, 29(1):44–51, 2000.CrossRefGoogle Scholar
  7. 8.
    S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In Proc. Computer-Aided Verif., pages 72–83, June 1997.Google Scholar
  8. 9.
    A. Gupta and I.S. Mumick, editors. Materialized Views: Techniques, Implementations, and Applications. The M.I.T. Press, Cambridge, MA, 1999.Google Scholar
  9. 10.
    T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis towork for verification: A case study. In Int. Symp. on Software Testing and Analysis, pages 26–38, 2000.Google Scholar
  10. 11.
    T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Static Analysis Symp., pages 280–301, 2000.Google Scholar
  11. 12.
    Y.A. Liu, S.D. Stoller, and T. Teitelbaum. Discovering auxiliary information for incremental computation. In Symp. on Princ. of Prog. Lang., pages 157–170, January 1996.Google Scholar
  12. 13.
    Y.A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Sci. of Comp. Program., 24:1–39, 1995.zbMATHCrossRefGoogle Scholar
  13. 14.
    K.L. McMillan. Verification of infinite state systems by compositional model checking. In CHARME, pages 219–234, 1999.Google Scholar
  14. 15.
    A. Møller and M.I. Schwartzbach. The pointer assertion logic engine. In Conf. on Prog. Lang. Design and Impl., pages 221–231, 2001.Google Scholar
  15. 16.
    R. Paige and S. Koenig. Finite differencing of computable expressions. Trans. on Prog. Lang. and Syst., 4(3):402–454, July 1982.zbMATHCrossRefGoogle Scholar
  16. 17.
    S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput. Syst. Sci., 55(2):199–209, October 1997.CrossRefMathSciNetGoogle Scholar
  17. 18.
    M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on Prog. Lang. and Syst., 24(3):217–298, 2002.CrossRefGoogle Scholar
  18. 19.
    M. Sharir. Some observations concerning formal differentiation of set theoretic expressions. Trans. on Prog. Lang. and Syst., 4(2):196–225, April 1982.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Reps
    • 1
  • Mooly Sagiv
    • 2
  • Alexey Loginov
    • 1
  1. 1.Comp. Sci. Dept.University of WisconsinUSA
  2. 2.School of Comp. Sci.Tel-Aviv UniversityUSA

Personalised recommendations