D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than n
0.292, Information Theory, IEEE Transactions on, 46 (2000), pp. 1339–1349. 405
MATH
CrossRef
MathSciNet
Google Scholar
D. Boneh, G. Durfee, and Y. Frankel, An attack on RSA given a small fraction of the private key bits, in Advances in Cryptology-AsiaCrypt’ 98, K. Ohta and D. Pei, eds., Berlin, 1998, Springer-Verlag, pp. 25–34. Lecture Notes in Computer Science Volume 1514. 405
CrossRef
Google Scholar
D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with high bits known, in Advances in Cryptology-EuroCrypt’ 96, U. Maurer, ed., Berlin, 1996, Springer-Verlag, pp. 178–189. Lecture Notes in Computer Science Volume 1070. 405, 412
Google Scholar
C. Crépeau and S. Wong, The RSA hidden small exponent method, in http://crypto.cs.mcgill.ca/~crepeau/RSA, 2001. 411
B. DE Weger, Cryptanalysis of RSA with small prime difference, Applicable Algebra in Engineering, Communication and Computing, 13 (2002), pp. 17–28. 406
MATH
CrossRef
MathSciNet
Google Scholar
M. Joye, P. Paillier, and S. Vaudenay, Efficient generation of prime numbers, in CHES 2000, Ç. K. Koç and C. Paar, eds., Berlin, 2000, Springer-Verlag, pp. 340–354. Lecture Notes in Computer Science Volume 1965. 405, 415
Google Scholar
A. K. Lenstra, Generating RSA moduli with a predetermined portion, in Advances in Cryptology-AsiaCrypt’ 98, K. Ohta and D. Pei, eds., Berlin, 1998, Springer-Verlag, pp. 1–10. Lecture Notes in Computer Science Volume 1514. 406, 415
CrossRef
Google Scholar
G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13 (1976), pp. 300–317. 405
MATH
MathSciNet
Google Scholar
R. L. Rivest and A. Shamir, Efficient factoring based on partial information., in Advances in Cryptology-EuroCrypt’ 85, F. Pichler, ed., Berlin, 1985, Springer-Verlag, pp. 31–34. Lecture Notes in Computer Science Volume 219. 405
CrossRef
Google Scholar
R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126. 405
MATH
CrossRef
MathSciNet
Google Scholar
A. Slakmon, Sur des méthodes et algorithmes de factorisation et leur application en cryptologie, Master’s thesis, Université de Montréal, dépt. IRO, 2000. 406
Google Scholar
S. Vaudenay, Private e-mail communication., 2 may 2001. 411
Google Scholar
M. Wiener, Cryptanalysis of short RSA secret exponents, Information Theory, IEEE Transactions on, 36 (1990), pp. 553–558. 405
MATH
CrossRef
MathSciNet
Google Scholar
A. Young and M. Yung, The dark side of “black-box” cryptography, or: Should we trust Capstone?, in Advances in Cryptology-Crypto’ 96, N. Koblitz, ed., Berlin, 1996, Springer-Verlag, pp. 89–103. Lecture Notes in Computer Science Volume 1109. 406, 412, 413
CrossRef
Google Scholar
—,Kleptography: Using cryptography against cryptography, in Advances in Cryptology-EuroCrypt’ 97, W. Fumy, ed., Berlin, 1997, Springer-Verlag, pp. 62–74. Lecture Notes in Computer Science Volume 1233. 406
Google Scholar
—,The prevalence of kleptographic attacks on discrete-log based cryptosystems, in Advances in Cryptology-Crypto’ 97, B. Kaliski, ed., Berlin, 1997, Springer-Verlag, pp. 264–276. Lecture Notes in Computer Science Volume 1294. 406
CrossRef
Google Scholar