Skip to main content

Quantum Wires: Interacting Quantum Liquids

  • Chapter
  • 602 Accesses

Part of the Springer Tracts in Modern Physics book series (STMP,volume 219)

Abstract

In 1989, the first inelastic light scattering experiments on electronic excitations in quantum wires were reported [1, 2]. Since then, a number of experimental papers appeared about, e.g., many–particle interactions and selection rules in those systems [3, 4, 5, 6, 7, 8, 9] and investigations with applied external magnetic field [10, 11, 12]. All these experiments were performed on lithographically–defined GaAs–AlGaAs structures. Consequently, the lateral sizes of these structures were on the order of 100 nm, or at least not much below [8, 9]. Unlike for the case of quantum dots, there is no well– established method of self–organized growth of modulation–doped quantum wires. During the past few years, Carbon nanotubes have evolved as new and alternative quantum–wire structures. So far, the main focus in the investigation of those very promising quantum structures by optical experiments has been on phonon excitations [13]. Phonon Raman spectroscopy has greatly helped in unveiling the topological structure of Carbon nanotubes [13]. An interesting further method to produce very narrow wires with atomic–layer precision is the so called cleaved–etched overgrowth (CEO) [14]. However, with CEO it is difficult to grow very large arrays of wires, which would be necessary to get enough signal strength in inelastic light scattering experiments. Hence, there are so far no reports of inelastic light scattering experiments on CEO wires, though these might be promising structures for high–sensitivity experiments. As mentioned, most of the existing experimental reports are on lithographically–defined GaAs–AlGaAs quantum wires with rather mesoscopic widths. Hence, in those experimental structures, typically several Q1D subbands are occupied with electrons. In this chapter we will discuss both, experiments and calculations on such samples. The main focus will be on the microscopic origin of confined plasmons and interesting internal interaction effects in a magnetic field. These experimental results are described well within the RPA, i.e., a Fermi–liquid theory, as we will see later.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Weiner, G. Danan, A. Pinczuk, J. Valladares, L. N. Pfeiffer, and K. W. West: Phys. Rev. Lett. 63, 1641 (1989)

    CrossRef  CAS  Google Scholar 

  2. T. Egeler, G. Abstreiter, G. Weimann, T. Demel, D. Heitmann, P. Grambow, and W. Schlapp: Phys. Rev. Lett. 65, 1804 (1990)

    CrossRef  CAS  Google Scholar 

  3. C. Schüller, G. Biese, K. Keller, C. Steinebach, D. Heitmann, P. Grambow, and K. Eberl: Phys. Rev. B 54, R17304 (1996)

    CrossRef  Google Scholar 

  4. G. Biese, C. Schüller, K. Keller, C. Steinebach, D. Heitmann, P. Grambow, and K. Eberl: Phys. Rev. B 53, 9565 (1996)

    CrossRef  CAS  Google Scholar 

  5. A. R. Goñi, A. Pinczuk, J. S. Weiner, J. S. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West: Phys. Rev. Lett. 67, 3298 (1991)

    CrossRef  Google Scholar 

  6. A. Schmeller, A. R. Goñi, A. Pinczuk, J. S. Weiner, J. S. Calleja, B. S. Dennis, L. N. Pfeiffer, and K. W. West: Phys. Rev. B 49, 14778 (1994)

    CrossRef  CAS  Google Scholar 

  7. C. Dahl, B. Jusserand, and B. Etienne: Phys. Rev. B 51, 17211 (1995)

    CrossRef  CAS  Google Scholar 

  8. F. Perez, B. Jusserand, and B. Etienne: Phys. Rev. B 60, 13310 (1999)

    CrossRef  CAS  Google Scholar 

  9. F. Perez, B. Jusserand, and B. Etienne: Physica E 7, 521 (2000)

    CrossRef  CAS  Google Scholar 

  10. A. R. Goñi, A. Pinczuk, J. S. Weiner, B. S. Dennis, L. N. Pfeiffer, and K. W. West: Phys. Rev. Lett. 67, 1151 (1993)

    CrossRef  Google Scholar 

  11. C. Steinebach, R. Krahne, G. Biese, C. Schüller, D. Heitmann, and K. Eberl: Phys. Rev. B 54, R14281 (1996)

    CrossRef  CAS  Google Scholar 

  12. E. Ulrichs, G. Biese, C. Steinebach, C. Schüller, and D. Heitmann: Phys. Rev. B 56, R12760 (1973)

    CrossRef  Google Scholar 

  13. S. Reich, C. Thomsen, and J. Maultzsch: Carbon Nanotubes, Basic Concepts and Physical Properties (Wiley VCH, 2004)

    Google Scholar 

  14. W. Wegscheider, G. Schedelbeck, M. Bichler, and G. Abstreiter: in Festkörperprobleme / Advances in Solid State Physics, Ed. B. Kramer (Vieweg Braunschweig Wiesbaden 1999) Vol. 38, p. 153

    Google Scholar 

  15. S. Tomonaga: Prog. Theor. Phys. 5, 544 (1950); J. M. Luttinger: J. Math. Phys. 4, 1154 (1963); H. J. Schulz: Phys. Rev. Lett. 71, 1864 (1993)

    CrossRef  Google Scholar 

  16. M. Sassetti and B. Kramer: Phys. Rev. Lett. 80, 1485 (1998)

    CrossRef  CAS  Google Scholar 

  17. Q. P. Li and S. Das Sarma: Phys. Rev. B 45, 13713 (1992)

    CrossRef  Google Scholar 

  18. D. W. Wang, A. J. Mills, and S. Das Sarma: Phys. Rev. Lett. 85, 4570 (2000)

    CrossRef  CAS  Google Scholar 

  19. U. Merkt: Physica B 189, 165 (1993)

    CrossRef  CAS  Google Scholar 

  20. G. Eliasson, J.-W. Wu, P. Hawrylak, and J. J. Quinn: Solid State Commun. 60, 41 (1986)

    CrossRef  CAS  Google Scholar 

  21. Christian Schüller, in Festkörperprobleme / Advances in Solid State Physics, Ed. B. Kramer (Vieweg Braunschweig Wiesbaden 1999) Vol. 38, p. 167

    Google Scholar 

  22. Christian Schüller: Physica E 3, 121 (1998)

    CrossRef  Google Scholar 

  23. L. Brey, N. Johnson, and B. Halperin: Phys. Rev. B 40, 10647 (1989)

    CrossRef  Google Scholar 

  24. P. Maksym and T. Chakraborty: Phys. Rev. Lett. 65, 108 (1990)

    CrossRef  CAS  Google Scholar 

  25. see D. Heitmann and J.-P. Kotthaus in Physics Today, June 1993, p. 56, and references therein

    Google Scholar 

  26. C. Steinebach, C. Schüller, G. Biese, and D. Heitmann: Phys. Rev. B 57, 1703 (1998)

    CrossRef  CAS  Google Scholar 

  27. G. Biese, C. Schüller, T. Kurth, D. Heitmann, P. Grambow, and K. Eberl: Surf. Sci. 361/362, 797 (1996)

    CrossRef  CAS  Google Scholar 

  28. T. Demel, D. Heitmann, P. Grambow, and K. Ploog: Phys. Rev. Lett. 66, 2657 (1991)

    CrossRef  CAS  Google Scholar 

  29. E. Ulrichs, G. Biese, C. Steinebach, C. Schüller, D. Heitmann, and K. Eberl: Phys. Stat. Sol. 164, 277 (1997)

    CrossRef  CAS  Google Scholar 

  30. Q. P. Li and S. DasSarma: Phys. Rev. B 43, 11768 (1991)

    CrossRef  Google Scholar 

  31. Weiming Que: Phys. Rev. B 43, 7127 (1991)

    CrossRef  Google Scholar 

  32. S. Das Sarma and W. Y. Lai: Phys. Rev. B 32, 1401 (1985)

    CrossRef  CAS  Google Scholar 

  33. D. C. Mattis and E. H. Lieb: J. Math. Phys. 6, 375 (1965); A. Luther and I. Peschel: Phys. Rev. B 9, 2911 (1974); F. D. M. Haldane: J. Phys. C 14, 2585 (1981)

    CrossRef  Google Scholar 

  34. Annelene Dethlefsen: Diplomarbeit, University of Hamburg, 2004

    Google Scholar 

  35. A. Gold and A. Ghazali: Phys. Rev. B 41, 7626 (1990)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Schüller, C. (2006). Quantum Wires: Interacting Quantum Liquids. In: Inelastic Light Scattering of Semiconductor Nanostructures. Springer Tracts in Modern Physics, vol 219. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-36526-5_6

Download citation

Publish with us

Policies and ethics