Advertisement

Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway

  • Kwang-Hyun Cho 
  • Sung-Young Shin 
  • Hyun-Woo Kim 
  • Olaf Wolkenhauer
  • Brian McFerran
  • Walter Kolch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2602)

Abstract

This paper investigates the influence of the Raf Kinase In- hibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signaling pathway through mathematical modeling and simula- tion. Using nonlinear ordinary differential equations to represent bio- chemical reactions in the pathway, we suggest a technique for parameter estimation, utilizing time series data of proteins involved in the signal- ing pathway. The mathematical model allows the simulation the sensi- tivity of the ERK pathway to variations of initial RKIP and ERK-PP (phosphorylated ERK) concentrations along with time. Throughout the simulation study, we can qualitatively validate the proposed mathemati- cal model compared with experimental results.

Keywords

Extracellular Signal Regulate Kinase Nonlinear Ordinary Differential Equation Association Parameter Nonlinear Time Series Analysis Extracellular Signal Regulate Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yeung, K., Janosch, P., Rose, D. W., Mischak, H., Sedivy, J. M., and Kolch, W.: Mechanism of Suppression of the Raf/MEK/Extracellular Signal-Regulated Kinase Pathway by the Raf Kinase Inhibitor Protein. MOL. CELL. BIOL. 20 (2000) 3079–3085CrossRefGoogle Scholar
  2. [2]
    Yeung, K, Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Kat-sanakis, K. D., Rose, D. W., Mischak, H., Sedivy, J. M., and Kolch, W.: Sup-pression of Raf-1 kinase activity and MAP kinase signaling By RKIP. Nature. 401 (1999) 173–177CrossRefGoogle Scholar
  3. [3]
    Bock, H. G.: Numerical treatment of inverse problems in chemical reaction kinetics. Modeling of Chemical Reaction Systems. 18 (1981) 102–125Google Scholar
  4. [4]
    Hegger, R., Kantz, H., Schmuser, F., Diestelhorst, M., Kapsch, R. P., and Beige, H.: Dynamical properties of a ferroelectric capccitor observed through nonlinear time series analysis. Chaos. 8 (1998) 727–736zbMATHCrossRefGoogle Scholar
  5. [5]
    Hegger, R., Kantz, H., Schmuser, F., Diestelhorst, M., Kapsch, R. P., and Beige, H.: Dynamical properties of a ferroelectric capccitor observed through nonlinear time series analysis. Chaos. 8 (1998) 727–736zbMATHCrossRefGoogle Scholar
  6. [6]
    Voit, E. O., Computational Analysis of Biochemical Systems, Cambridge Uni-versity Press: Cambridge, U.K., 2000Google Scholar
  7. [7]
    Marshall, C. J., Specificity of receptor tyrosine kinase signaling: transient ver-sus sustained extracellular signal-regulated kinase activation: Cell. 80 (1995) 179–185Google Scholar
  8. [8]
    Zhou, B., Wang, Z. X., Zhao, Y., Brautigan, D. L., and Zhang, Z. Y.:The speci-ficity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphotases. J Biol Chem. 277 (2002) 31818–31825CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kwang-Hyun Cho 
    • 1
  • Sung-Young Shin 
    • 1
  • Hyun-Woo Kim 
    • 1
  • Olaf Wolkenhauer
    • 2
  • Brian McFerran
    • 3
    • 4
  • Walter Kolch
    • 3
    • 5
  1. 1.School of Electrical EngineeringUniversity of UlsanUlsanKorea
  2. 2.Dept. of Biomolecular Sciences and Dept. of Electrical Engineering and ElectronicsUMISTManchesterUK
  3. 3.Beatson Institute for Cancer ResearchCancer Research UK Beatson LaboratoriesGlasgowUK
  4. 4.Organon LaboratoriesNewhouseMotherwellUK
  5. 5.Institute of Biomedical and Life SciencesUniversity of GlasgowUniversity AvenueGlasgowUK

Personalised recommendations