Skip to main content

Shortening the Computational Time of the Fluorescent DNA Computing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2568))

Abstract

We present a method to shorten the computational time of the fluorescent DNA computing. Fluorescent DNA computing is proposed to solve intractable computation problems such as SAT problems. They use two groups of fluorescent DNA strands. One group of fluorescent DNA represents that a constraint of the given problem is satisfied, and another group represents that a constraint is unsatisfied. The calculation is executed by hybridizing them competitively to DNA beads or spots on DNA microarray. Though the biological operation used in the fluorescent DNA computing is simple, it needs the same number of beads or spots on microarray as the number of candidate solutions. In this paper, we prove that one bead or spot can represent plural candidate solutions through SAT problem, and show the algorithm and an experimental result of the fluorescent DNA computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(11), (1994) 1021–1024.

    Article  Google Scholar 

  2. Bejar, R., Manya, M.: Solving the round robin problem using propositional logic, In Proc. of 17th National Conference on Artificial Intelligence (AAAI’2000), AAAI press/MIT press (2000), 262–266.

    Google Scholar 

  3. Calude, C.S., Pâun, G.: Computing with cells and atoms. Taylor & Francis Publisher, London, (2000).

    Google Scholar 

  4. DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, (1997), 680–686.

    Article  Google Scholar 

  5. Feldkamp, U., Sagha., S., Banzhaf, W., Rauhe, H.: DNASequenceGenerator: a program for the construction of DNA sequences. DNA7, 7th International Meeting on DNA Based Computers, Preliminary Proceedings, (2001), 179–188.

    Google Scholar 

  6. Garey, R., Johnson, S.: Computers and Intractability, a guide to the theory of NPcompleteness. Freeman and Company (1991).

    Google Scholar 

  7. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic search, Proc. of 13th National Conference on Artificial Intelligence (AAAI’96), AAAI press/MIT press 2, (1996) 1194–1201.

    Google Scholar 

  8. Liu, Q. et al.: DNA computing on surfaces. Nature 403, (2000) 175–179.

    Article  Google Scholar 

  9. Lockhart, D., et al.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol., 14, (1996) 1675–1680.

    Article  Google Scholar 

  10. Brenner, S., et al.: In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. PNAS 97, (2000) 1665–1670.

    Article  Google Scholar 

  11. Brenner, S., et al.: Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18, (2000) 630–634

    Article  Google Scholar 

  12. Paun, G., Rozenberg, G., Salomaa, A.: DNA computing: new computing paradigms. Springer Verlag, (1998).

    Google Scholar 

  13. Rozenberg, G., Salomaa, A.: Handbook of formal languages. Springer Verlag, 1-3, (1997).

    Google Scholar 

  14. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, (2000) 1223–1226.

    Article  Google Scholar 

  15. Schena, M., Shalton, D., Davis, R.W., Brown, B.O.: Quantative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, (1995) 467–470.

    Article  Google Scholar 

  16. Smith L. M. et al.: A surface-based approach to DNA computation. J. Computational Biology 5, (1998) 255–267.

    Article  Google Scholar 

  17. Takenaka, Y., Hashimoto, A.: A proposal of DNA computing on beads with application to SAT problems. DNA7, 7th International Meeting on DNA Based Computers, Preliminary Proceedings, (2001), 331–339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takenaka, Y., Hashimoto, A. (2003). Shortening the Computational Time of the Fluorescent DNA Computing. In: Hagiya, M., Ohuchi, A. (eds) DNA Computing. DNA 2002. Lecture Notes in Computer Science, vol 2568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36440-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36440-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00531-5

  • Online ISBN: 978-3-540-36440-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics