Skip to main content

Direct Embedding and Detection of RST Invariant Watermarks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2578))

Abstract

A common goal of many watermarking techniques is to produce a mark that remains detectable after the geometric transformations of Rotation, Scale and Translation; also known as RST invariance. We present a simple approach to achieving RST invariance using pixel-by-pixel addition of oscillating homogeneous patterns known as Logarithmic Radial Harmonic Functions [LRHFs]. LRHFs are the basis functions of the Fourier-Mellin transform and have perfect correlation, orthogonality, and spread-spectrum properties. Once the patterns have been embedded in an image they can be detected directly regardless of RST and with great sensitivity by correlation with the corresponding complex LRHFs. In contrast to conventional methods our approach is distinguished by the utilization of signal phase information and the absence of interpolation artifacts. Data encoding is based on the information in the relative centre positions of multiple spatially overlapping patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Ruanaidh, J. J. K., and Pun, T., “Rotation, Scale and Translation Invariant Spread Spectrum Digital Image Watermarking”, Sig. Proc. 66,(3), 303–317, (1998).

    MATH  Google Scholar 

  2. Cox, I. J., Kilian, J., Leighton, F. T., and Shamoon, T., “Secure Spread Spectrum Watermarking For Multimedia”, IEEE Transactions of Image Processing 6,(12), 1673–1687, (1997).

    Article  Google Scholar 

  3. Rhoads, G, US patent 5,636,292, “Steganography methods employing embedded calibration data”, 1995.

    Google Scholar 

  4. Honsinger, C., and Rabbani, M., “Data Embedding Using Phase Dispersion”, Eastman Kodak, 2000.

    Google Scholar 

  5. Linnartz, J.-P., Depovere, G., and Kalker, T., “On the Design of a Watermarking System: Considerations and Rationales,” Information Hiding, Third International Workshop, IH’99, Dresden, Germany, (1999), 253–269.

    Google Scholar 

  6. Maes, M., Kalker, T., Haitsma, J., and Depovere, G., “Exploiting Shift Invariance to Obtain a High Payload in DigitalImage Watermarking,” IEEE International Conference on Multimedia Computing and Systems, ICMCS, Florence, Italy, (1999), 7–12.

    Google Scholar 

  7. V. Solachidis, and Pitas, I., “Self-similar ring shaped watermark embedding in 2-D DFT domain,”. European Signal Processing Conf.(EUSIPCO’00), Tampere, Finland, 2000

    Google Scholar 

  8. Casasent, D., and Psaltis, D., “Position, rotation, and scale invariant optical correlation”, Applied Optics 15,(7), 1795–1799, (1976).

    Google Scholar 

  9. Mendlovic, D., Marom, E., and Konforti, N., “Shift and scale invariant pattern recognition using Mellin radial harmonics”, Opt. Comm. 67,(3), 172–176, (1988).

    Article  Google Scholar 

  10. Rosen, J., and Shamir, J., “Scale invariant pattern recognition with logarithmic radial harmonic filters”, App. Opt. 28,(2), 240–244, (1989).

    Article  Google Scholar 

  11. Sheng, Y., and Shen, L., “Orthogonal Fourier Mellin moments for invariant pattern recognition”, J. Opt. Soc. Am. A 11,(6), 1748–1757, (1994).

    Google Scholar 

  12. Moses, H. E., and Prosser, R. T., “Phases of complex functions from the amplitudes of the functions and the amplitudes of the Fourier and Mellin transforms”, J. Opt. Soc. Am. A 73,(11), 1451–1454, (1983).

    MathSciNet  Google Scholar 

  13. Larkin, K. G., Bone, D., and Oldfield, M. A., “Natural demodulation of two-dimensional fringe patterns: I. General background to the spiral phase quadrature transform.”, J. Opt. Soc. Am. A 18,(8), 1862–1870, (2001). http://www.physics.usyd.edu.au/~larkin/

    Article  Google Scholar 

  14. Champeney, D. C., A handbook of Fourier transforms, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  15. Bracewell, R. N., Two-Dimensional Imaging, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

    MATH  Google Scholar 

  16. Larkin, K. G., “Topics in Multi-dimensional Signal Demodulation”, PhD. University of Sydney, 2001. http://setis.library.usyd.edu.au/~thesis/

  17. Larkin, K. G., “Natural demodulation of two-dimensional fringe patterns: II. Stationary phase analysis of the spiral phase quadrature transform.”, J. Opt. Soc. Am. A 18,(8), 1871–1881, (2001).

    Article  MathSciNet  Google Scholar 

  18. Bracewell, R. N., The Fourier transform and its applications, McGraw Hill, New York, 1978.

    Google Scholar 

  19. Stein, E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.

    MATH  Google Scholar 

  20. Calderon, A. P., and Zygmund, A., “On the existence of certain singular integrals”, Acta Mathematica 88, 85–139, (1952).

    Article  MATH  MathSciNet  Google Scholar 

  21. Petitcolas, F. A. P., Anderson, R. J., and Kuhn, M. G., “Attacks on copyright marking systems,” Information Hiding, Second International Workshop, IH’98, Portland, Oregon, USA, (1998), 219–239.

    Google Scholar 

  22. Petitcolas, F. A. P., “Watermarking scheme evaluation-Algorithms need common benchmarks.” IEEE Signal Processing Magazine 17,(5), 58–64, (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fletcher, P.A., Larkin, K.G. (2003). Direct Embedding and Detection of RST Invariant Watermarks. In: Petitcolas, F.A.P. (eds) Information Hiding. IH 2002. Lecture Notes in Computer Science, vol 2578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36415-3_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36415-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00421-9

  • Online ISBN: 978-3-540-36415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics