Advertisement

Robust Information-Theoretic Private Information Retrieval

  • Amos Beimel
  • Yoav Stahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2576)

Abstract

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of its choice from a database, such that the servers storing the database do not gain information on the identity of the item being retrieved. PIR protocols were studied in depth since the subject was introduced in Chor, Goldreich, Kushilevitz, and Sudan 1995. The standard definition of PIR protocols raises a simple question - what happens if some of the servers crash during the operation? How can we devise a protocol which still works in the presence of crashing servers? Current systems do not guarantee availability of servers at all times for many reasons, e.g., crash of server or communication problems. Our purpose is to design robust PIR protocols, i.e., protocols which still work correctly even if only k out of l servers are available during the protocols’ operation (the user does not know in advance which servers are available). We present various robust PIR protocols giving different tradeofis between the different parameters. These protocols are incomparable, i.e., for different values of n and k we will get better results using different protocols. We first present a generic transformation from regular PIR protocols to robust PIR protocols, this transformation is important since any improvement in the communication complexity of regular PIR protocol will immediately implicate improvement in the robust PIR protocol communication. We also present two specific robust PIR protocols. Finally, we present robust PIR protocols which can tolerate Byzantine servers, i.e., robust PIR protocols which still work in the presence of malicious servers or servers with corrupted or obsolete databases.

Keywords

Communication Complexity Generic Transformation Total Communication Secret Sharing Scheme Hash Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th FOCS. (1995) 41–51. J. version: JACM, 45:965-981, 1998.MathSciNetGoogle Scholar
  2. 2.
    Ishai, Y., Kushilevitz, E.: Improved upper bounds on information theoretic private information retrieval. In: 31st STOC. (1999) 79–88Google Scholar
  3. 3.
    Ambainis, A.: Upper bound on the communication complexity of private information retrieval. In: 24th ICALP. Vol. 1256 of LNCS. (1997) 401–407Google Scholar
  4. 4.
    Itoh, T.: Efficient private information retrieval. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences E82-A (1999) 11–20Google Scholar
  5. 5.
    Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A unified construction. In: 28th ICALP. Vol. 2076 of LNCS. (2001) 912–926Google Scholar
  6. 6.
    Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n1/2k-1 ) barrier for inforamtion-theoretic private information retrieval. In: 43rd FOCS. (2002) To Appear.Google Scholar
  7. 7.
    Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: STACS’ 90. Vol. 415 of LNCS. (1990) 37–48Google Scholar
  8. 8.
    Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Locally random reductions: Improvements and applications. J. of Cryptology 10 (1997) 17–36zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Stahl, Y.: Robust information-theoretic private information retrieval. Master’s thesis, Ben-Gurion University, Beer-Sheva (2002)Google Scholar
  10. 10.
    Mehlhorn, K.: Data structures and Algorithms. Volume 1. Sorting and Searching. Springer-Verlag (1984)Google Scholar
  11. 11.
    Newman, I., Wigderson, A.: Lower bounds on formula size of Boolean functions using hypergraph entropy. SIAM J. on Discrete Mathematics 8 (1995) 536–542zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions. Algorithmica 16 (1996) 434–449zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Blackburn, S.R.: Combinatorial designs and their applications. Research Notes in Mathematics 403 (1999) 44–70MathSciNetGoogle Scholar
  14. 14.
    Blackburn, S.R., Burmester, M., Desmedt, Y., Wild, P.R.: Efficient multiplicative sharing schemes. In EUROCRYPT’ 96. Volume 1070 of LNCS. (1996) 107–118Google Scholar
  15. 15.
    Fiat, A., Naor, M.: Broadcast encryption. In CRYPTO’ 93. Volume 773 of LNCS. (1994) 480–491Google Scholar
  16. 16.
    Stinson, D., van Trung, T., Wei, R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. of Statistical Planning and Inference 86(2) (2000) 595–617zbMATHCrossRefGoogle Scholar
  17. 17.
    Alon, N.: Explicit construction of exponential sized families of k-independent sets. Discrete Math. 58 (1986) 191–193zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Atici, M., Magliveras, S.S., Stinson, D.R., Wei, W.D.: Some recursive constructions for perfect hash families. J. Combin. Des. 4 (1996) 353–363zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Blackburn, S.R.: Perfect hash families: Probabilistic methods and explicit constructions. J. of Combin. Theory-Series A 92 (2000) 54–60zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Blackburn, S.R., Wild, P.R.: Optimal linear perfect hash families. J. Combinatorial Theory 83 (1998) 233–250zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fredman, M.L., Komlos, J.: On the size of separating systems and families of perfect hash functions. SIAM J. Alg. Discrete Methods 5 (1984) 61–68zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Korner, J., Marton: New bounds for perfect hashing via information theory. European J. Combin. 9 (1988) 523–530MathSciNetGoogle Scholar
  23. 23.
    Stinson, D.R., Wei, R., Zhu, L.: New constructions for perfect hash families and related structures using combinatorial designs and codes. J. of Combinatorial Designs 8 (2000) 189–200zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Czech, Z.J., Havas, G., Majewski, B.S.: Perfect hashing. Theoretical Computer Science 182 (1997) 1–143zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shamir, A.: How to share a secret. CACM 22 (1979) 612–613zbMATHMathSciNetGoogle Scholar
  26. 26.
    Slot, C., van Emde Boas, P.: On tape versus core; an application of space efficient perfect hash functions to the invariance of space. In: 16thSTOC. (1984) 391–400Google Scholar
  27. 27.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)Google Scholar
  28. 28.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. SIAM 8 (1960) 300–304zbMATHMathSciNetGoogle Scholar
  29. 29.
    Macwilliams, F.R., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Mathematical library. North-Holland (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Amos Beimel
    • 1
  • Yoav Stahl
    • 1
  1. 1.Computer Science Dept.Ben-Gurion UniversityIsrael

Personalised recommendations