Advertisement

On a Resynchronization Weakness in a Class of Combiners with Memory

  • Yuri Borissov
  • ⋆Svetla Nikova
  • Bart Preneel
  • Joos Vandewalle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2576)

Abstract

In some applications for synchronous stream ciphers frequent resynchronization or resynchronization upon request may be necessary. We describe a weakness in a class of combiners with one-bit memory which makes them vulnerable in such applications requesting resynchronization. A correlation attack based on chi-square criterion, which in some aspects complements the attack studied by Daemen et. al., is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Beker and F. Piper, Cipher System: the protection of communications, Northwood Publications, 1982.Google Scholar
  2. 2.
    A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of A5/1 on a PC, in Fast Software Encryption 2000, LNCS 1978, Springer-Verlag, pp.1–18.CrossRefGoogle Scholar
  3. 3.
    A. Canteaut and M. Trabbia, Improved correlation attacks using parity-check equations of weight 4 and 5, Advances in Cryptology-Eurocrypt 2000, LNCS 1807, pp. 573–588.Google Scholar
  4. 4.
    V. Chepyshov, T. Johansson, B. Smeets, A simple algorithm for fast correlation attacks on certain stream ciphers, Fast Software Encryption 2000, LNCS 1978, Springer-Verlag, pp. 181–195.CrossRefGoogle Scholar
  5. 5.
    J. Daemen, R. Govaerts and J. Vandewalle, Resynchronization weaknesses in synchronous stream ciphers, Advances in Cryptology-Eurocrypt’93, LNCS 765, Springer-Verlag, Berlin, 1994, pp. 159–167.Google Scholar
  6. 6.
    E. Dawson and A. Clark, Divide and conquer attacks on certain classes of stream ciphers, Cryptologia, vol. 18(1), 1994, pp. 25–40.zbMATHCrossRefGoogle Scholar
  7. 7.
    J. D. Golic, Correlation properties of a general binary combiner with memory, J. Cryptology, vol. 9(2), 1996, pp. 111–126.zbMATHCrossRefGoogle Scholar
  8. 8.
    J. D. Golic, M. Salmasizadeh, E. Dawson, Fast correlation attacks on the summation generator, J.Cryptology vol., 2000, pp. 245–262.Google Scholar
  9. 9.
    S. W. Golomb, Shift Register Sequences, Holden-Day, Inc., 1967.Google Scholar
  10. 10.
    T. Johansson and F. Jonsson, Improved fast correlation attacks on stream ciphers via convolutional codes, Advanced in Cryptology-Eurocrypt’99, LNCS 1592, Springer-Verlag, 1999, pp. 347–362.Google Scholar
  11. 11.
    A. Klapper and M. Goresky, Cryptanalysis based on 2-adic Rational Approximation, Advances in Cryptology-Crypto 1995, LNCS 963, Springer-Verlag, 1995, pp. 262–273.Google Scholar
  12. 12.
    D. J. C. MacKay, A Free energy minimization framework for inference problems in modulo 2 arithmetic, Fast Software Encryption 1994, LNCS 1008, Springer-Verlag, pp. 179–195.Google Scholar
  13. 13.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977.Google Scholar
  14. 14.
    W. Meier and O. Staffelbach, Correlation properties of combiners with memory in stream ciphers, J. Cryptology, vol. 5(1), 1992, pp. 67–86.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    W. Meier and O. Staffelbach, Fast correlation attacks on certain stream ciphers, J. Cryptology, vol. 1(3), 1989, pp. 159–167.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.Google Scholar
  17. 17.
    M. J. Mihaljevic and J. D. Golic, A method for convergence analysis of iterative probabilistic decoding, IEEE Trans. on Information Theory, vol. 46(6), 2000, pp. 2206–2211.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    M. J. Mihaljevic, M. P. C. Fossorier, H. Imai, A low-complexity and highperformance algorithm for the fast correlation attack, Fast Software Encryption 2000, LNCS 1978, Springer-Verlag, pp. 196–212.CrossRefGoogle Scholar
  19. 19.
    W. T. Penzhorn, Correlation attacks on stream ciphers: computing low-weight parity checks based on error-correcting codes, Fast Software Encryption 1996, LNCS 1039, pp. 159–172.Google Scholar
  20. 20.
    W. W. Petersen, Error-Correcting Codes, John Wiley and Sons, Inc. 1961.Google Scholar
  21. 21.
    R. A. Rueppel, Correlation immunity and the summation generator, LNCS, vol. 218, 1986, pp. 260–272.Google Scholar
  22. 22.
    R. A. Rueppel, Analysis and design of stream ciphers, Springer-Verlag, Berlin, 1986.zbMATHGoogle Scholar
  23. 23.
    T. Sigenthaler, Correlation immunity of nonlinear combining functions for cryptographic applications, IEEE Trans. Inf. Theory, vol. 30(6), 1984, pp. 776–780.CrossRefGoogle Scholar
  24. 24.
    T. Sigenthaler, Decrypting a class of stream ciphers using ciphertext only, IEEE Trans. Comput., vol. 34(1), 1985, pp. 2010–2017.Google Scholar
  25. 25.
    T. Sigenthaler, Cryptanalists representation of nonlinearly filtered ML-sequences, Eurocrypt 1985, LNCS 219, pp.103–110.Google Scholar
  26. 26.
    G. Z. Xiao, J. Massey, A Spectral characterization of correlation-immune combining functions IEEE Trans. Inf Theory, vol. 34(3), 1988, pp. 569–571.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yuri Borissov
    • 1
  • ⋆Svetla Nikova
  • Bart Preneel
    • 1
  • Joos Vandewalle
    • 2
  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department Electrical EngineeringESAT/COSIC Katholieke Universiteit LeuvenHeverlee-LeuvenBelgium

Personalised recommendations