Skip to main content

Motion Planning and Control Problems for Underactuated Robots

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 4))

Abstract

Motion planning and control are key problems in a collection of robotic applications including the design of autonomous agile vehicles and of minimalist manipulators. These problems can be accurately formalized within the language of affine connections and of geometric control theory. In this paper we overview recent results on kinematic controllability and on oscillatory controls. Furthermore, we discuss theoretical and practical open problems as well as we suggest control theoretical approaches to them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction. Springer Verlag, New York, NY, 1990.

    MATH  Google Scholar 

  2. J. Borenstein. The OmniMate: a guidewire-and beacon-free AGV for highly reconfigurable applications. International Journal of Production Research, 38(9):1993–2010, 2000.

    Article  MATH  Google Scholar 

  3. F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM J Control Optim, 40(1):166–190, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Bullo. Averaging and vibrational control of mechanical systems. SIAM J Control Optim, 41(2):542–562, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Bullo, J. Cortés, A. D. Lewis, and S. Martínez. Vector-valued quadratic forms in control theory. In Proc MTNS, Notre Dame, IN, August 2002. Workshop on Open Problems in Systems Theory.

    Google Scholar 

  6. F. Bullo, N. Ehrich Leonard, and A. D. Lewis. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups. IEEE Trans Automat Control, 45(8):1437–1454, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Bullo and A. D. Lewis. On the homogeneity of the affine connection model for mechanical control systems. In Proc CDC, pages 1260–1265, Sydney, Australia, December 2000.

    Google Scholar 

  8. F. Bullo, A. D. Lewis, and K. M. Lynch. Controllable kinematic reductions for mechanical systems: concepts, computational tools, and examples. In Proc MTNS, Notre Dame, IN, August 2002.

    Google Scholar 

  9. F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Trans Robotics Automat, 17(4):402–412, 2001.

    Article  Google Scholar 

  10. F. Bullo and M. Zefran. On mechanical control systems with nonholonomic constraints and symmetries. Syst & Control Lett, 45(2):133–143, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Camariña, F. Silva Leite, and P. E. Crouch. Splines of class Ck on non-Euclidean spaces. IMA Journal of Mathematical Control & Information, 12:399–410, 1995.

    Article  Google Scholar 

  12. G. Campion, G. Bastin, and B. D’Andrea-Novel. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robotics Automat, 12(1):47–62, 1996.

    Article  Google Scholar 

  13. G. Chirikjian and J. W. Burdick. Kinematics of hyperredundant locomotion. IEEE Trans Robotics Automat, 11(6):781–793, 1994.

    Article  Google Scholar 

  14. J. Cortés, S. Martínez, and F. Bullo. On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces. IEEE Trans Automat Control, 47(8):1396–1401, 2002.

    Article  MathSciNet  Google Scholar 

  15. G. Endo and S. Hirose. Study on roller-walker (system integration and basic experiments). In Proc ICRA, pages 2032–7, Detroit, MI, May 1999.

    Google Scholar 

  16. S. Hirose. Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford, UK, 1993.

    Google Scholar 

  17. S. Hirose. Variable constraint mechanism and its application for design of mobile robots. Int J Robotics Research, 19(11):1126–1138, 2000.

    Article  Google Scholar 

  18. J. K. Hodgins and M. H. Raibert. Biped gymnastics. Int J Robotics Research, 9(2):115–132, 1990.

    Article  Google Scholar 

  19. R. Holmberg and O. Khatib. Development and control of a holonomic mobile robot for mobile manipulation tasks. Int J Robotics Research, 19(11):1066–1074, 2000.

    Article  Google Scholar 

  20. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. International Journal of Computational Geometry and Applications, 9(4):495–512, 1999.

    Article  MathSciNet  Google Scholar 

  21. J. C. Jalbert, S. Kashin, and J. Ayers. Design considerations and experiments of a biologically based undulatory lamprey AUV. In Ninth International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, 1995.

    Google Scholar 

  22. T. Karatas and F. Bullo. Randomized searches and nonlinear programming in trajectory planning. In Proc CDC, pages 5032–5037, Orlando, FL, December 2001.

    Google Scholar 

  23. N. Kato and T. Inaba. Guidance and control of fish robot with apparatus of pectoral fin motion. In Proc ICRA, pages 446–451, Leuven, Belgium, May 1998.

    Google Scholar 

  24. L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional space. IEEE Trans Robotics Automat, 12(4):566–580, 1996.

    Article  Google Scholar 

  25. S. D. Kelly, R. J. Mason, C. T. Anhalt, R. M. Murray, and J. W. Burdick. Modelling and experimental investigation of carangiform locomotion for control. In Proc ACC, pages 1271–1276, Philadelphia, PA, 1998.

    Google Scholar 

  26. P. S. Krishnaprasad and D. P. Tsakiris. G-snakes: Nonholonomic kinetic chains on Lie groups. In Proc CDC, pages 2955–2960, Lake Buena Vista, FL, December 1994.

    Google Scholar 

  27. P. S. Krishnaprasad and D. P. Tsakiris. Oscillations, SE(2)-snakes and motion control: a study of the roller racer. Dynamics and Stability of Systems, 16(4):347–397, 2001.

    MATH  MathSciNet  Google Scholar 

  28. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int J Robotics Research, 20(5):378–400, 2001.

    Article  Google Scholar 

  29. A. D. Lewis. The geometry of the maximum principle for affine connection control systems. Preprint available at: http://penelope.mast.queensu.ca/~andrew, 2000.

  30. A. D. Lewis. Simple mechanical control systems with constraints. IEEE Trans Automat Control, 45(8):1420–1436, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. D. Lewis and R. M. Murray. Configuration controllability of simple mechanical control systems. SIAM J Control Optim, 35(3):766–790, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. D. Lewis, J. P. Ostrowski, R. M. Murray, and J. W. Burdick. Nonholonomic mechanics and locomotion: the snakeboard example. In Proc ICRA, pages 2391–2400, San Diego, CA, May 1994.

    Google Scholar 

  33. S. Martínez and J. Cortés. Motion control algorithms for simple mechanical systems with symmetry. Acta Applicandae Mathematicae, 2002. To appear.

    Google Scholar 

  34. S. Martínez, J. Cortés, and F. Bullo. Analysis and design of oscillatory controls systems. IEEE Trans Automat Control, June 2001. Submitted. Available electronically at http://motion.csl.uiuc.edu.

  35. T. McGeer. Passive dynamic walking. Int J Robotics Research, 9(2):62–82, 1990.

    Article  Google Scholar 

  36. K. A. Mclsaac and J. P. Ostrowski. A geometric approach to anguilliform locomotion: modelling of an underwater eel robot. In Proc ICRA, pages 2843–8, Detroit, MI, May 1999.

    Google Scholar 

  37. R. M. Murray, Z. X. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL, 1994.

    MATH  Google Scholar 

  38. S. Ostrovskaya, J. Angeles, and R. Spiteri. Dynamics of a mobile robot with three ball-wheels. Int J Robotics Research, 19(4):383–393, 2000.

    Article  Google Scholar 

  39. J. P. Ostrowski. Steering for a class of dynamic nonholonomic systems. IEEE Trans Automat Control, 45(8):1492–1497, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. P. Ostrowski and J. W. Burdick. The geometric mechanics of undulatory robotic locomotion. Int J Robotics Research, 17(7):683–701, 1998.

    Article  Google Scholar 

  41. F. G. Pin and S. M. Killough. A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans Robotics Automat, 10(4):480–9, 1994.

    Article  Google Scholar 

  42. M. H. Raibert. Legged Robots that Balance. MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  43. M. Rathinam and R. M. Murray. Configuration flatness of Lagrangian systems underactuated by one control. SIAM J Control Optim, 36(1):164–179, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  44. S. Saha, J. Angeles, and J. Darcovich. The design of kinematically isotropic rolling robots with omnidirectional wheels. Mechanism and Machine Theory, 30(8):1127–1137, 1995.

    Article  Google Scholar 

  45. J. A. Sethian. Level set methods: Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, New York, NY, 1996.

    MATH  Google Scholar 

  46. M. West and H. Asada. Design of ball wheel mechanisms for omnidirectional vehicles with full mobility and invariant kinematics. ASME Journal of Mechanical Design, 119(2):153–161, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez, S., Cortés, J., Bullo, F. (2003). Motion Planning and Control Problems for Underactuated Robots. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36224-X_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00251-2

  • Online ISBN: 978-3-540-36224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics