Advertisement

A Tutorial on Optical Networks

  • George N. Rouskas
  • Harry G. Perros
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2497)

Abstract

In this half-day tutorial, we present the current state-of-the-art in optical networks. We begin by discussing the various optical devices used in optical networks. Then, we present wavelength-routed networks, which is currently the dominant architecture for optical networks. We discuss wavelength allocation policies, calculation of call blocking probabilities, and network optimization techniques. Subsequently, we focus on the various protocols that have been proposed for wavelength-routed networks. Specifically, we present a framework for IP over optical networks, MPLS, LDP, CR-LDP, and GMPLS. Next, we discuss optical packet switching and optical burst switching, two new emerging and highly promising technologies.

Keywords

Optical Network Internet Protocol Wavelength Division Multiplex Optical Burst Switching Wavelength Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. O. Awduche. MPLS and traffic engineering in IP networks. IEEE Communications, 37(12):42–47, December 1999.Google Scholar
  2. 2.
    D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Requirements for traffic engineering over MPLS. RFC 2702, September 1999.Google Scholar
  3. 3.
    S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services. RFC 2475, December 1998.Google Scholar
  4. 4.
    E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture. RFC 3031, January 2001.Google Scholar
  5. 5.
    B. Davie and Y. Rekhter. MPLS Technology and Applications. Morgan Kaufmann Publishers, San Diego, California, 2000.Google Scholar
  6. 6.
    P. Ashwood-Smith et al. Generalized MPLS-signaling functional description. IETF Draft <draft-ietf-mpls-generalized-signaling-06.txt>, April 2001. Work in progress.Google Scholar
  7. 7.
    D. H. Su and D. W. Griffith. Standards activities for MPLS over WDM networks. Optical Networks, 1(3), July 2000.Google Scholar
  8. 8.
    O. Gerstel, B. Li, A. McGuire, G. N. Rouskas, K. Sivalingam, and Z. Zhang (Eds.). Special issue on protocols and architectures for next generation optical WDM networks. IEEE Journal Selected Areas in Communications, 18(10), October 2000.Google Scholar
  9. 9.
    R. Dutta and G. N. Rouskas. A survey of virtual topology design algorithms for wavelength routed optical networks. Optical Networks, 1(1):73–89, January 2000.Google Scholar
  10. 10.
    E. Leonardi, M. Mellia, and M. A. Marsan. Algorithms for the logical topology design in WDM all-optical networks. Optical Networks, 1(1):35–46, January 2000.Google Scholar
  11. 11.
    Y. Zhu, G. N. Rouskas, and H. G. Perros. A path decomposition approach for computing blocking probabilities in wavelength routing networks. IEEE/ACM Transactions on Networking, 8(6):747–762, December 2000.Google Scholar
  12. 12.
    L. Li and A. K. Somani. A new analytical model for multifiber WDM networks. IEEE Journal Selected Areas in Communications, 18(10):2138–2145, October 2000.Google Scholar
  13. 13.
    S. Ramamurthy and B. Mukherjee. Survivable WDM mesh networks, part I-protection. In Proceedings of INFO COM’ 99, pages 744–751, March 1999.Google Scholar
  14. 14.
    S. Ramamurthy and B. Mukherjee. Survivable WDM mesh networks, part II-restoration. In Proceedings of ICC’ 99, pages 2023–2030, June 1999.Google Scholar
  15. 15.
    A. Mokhtar and M. Azizoglu. Adaptive wavelength routing in all-optical netowrks. IEEE/ACM Transactions on Networking, 6(2):197–206, April 1998.Google Scholar
  16. 16.
    E. Karasan and E. Ayanoglu. Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks. IEEE/ACM Transactions on Networking, 6(2):186–196, April 1998.Google Scholar
  17. 17.
    H. Zang, J. P. Jue, and B. Mukherjee. A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Optical Networks, 1(1):47–60, January 2000.Google Scholar
  18. 18.
    B. Ramamurthy and B. Mukherjee. Wavelength conversion in WDM networking. IEEE Journal Selected Areas in Communications, 16(7):1061–1073, September 1998.Google Scholar
  19. 19.
    S. Subramaniam, M. Azizoglu, and A. Somani. All-optical networks with sparse wavelength conversion. IEEE/ACM Transactions on Networking, 4(4):544–557, August 1996.Google Scholar
  20. 20.
    T. Tripathi and K. Sivarajan. Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion. In Proceedings of INFOCOM’ 99, pages 329–336, March 1999.Google Scholar
  21. 21.
    N. Ghani. Lambda-labeling: A framework for IP-over-WDM using MPLS. Optical Networks, 1(2):45–58, April 2000.Google Scholar
  22. 22.
    L. H. Sahasrabuddhe and B. Mukherjee. Light-trees: Optical multicasting for improved performance in wavelength-routed networks. IEEE Communications, 37(2):67–73, February 1999.Google Scholar
  23. 23.
    D. Papadimitriou et al. Optical multicast in wavelength switched networks-architectural framework. IETF Draft <draft-poj-optical-multicast-01.txt>, July 2001. Work in progress.Google Scholar
  24. 24.
    B. Mukherjee. Optical Communication Networking. McGraw-Hill, 1997.Google Scholar
  25. 25.
    V. Sharma and E. A. Varvarigos. Limited wavelength translation in all-optical WDM mesh networks. In Proceedings of INFOCOM’ 98, pages 893–901, March 1999.Google Scholar
  26. 26.
    S. L. Hakimi. Steiner’s problem in graphs and its implications. Networks, 1:113–133, 1971.zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. Xin, G. N. Rouskas, and H. G. Perros. On the design of MPλS networks. Technical Report TR-01-07, North Carolina State University, Raleigh, NC, July 2001.Google Scholar
  28. 28.
    S. Subramaniam, M. Azizoglu, and A. K. Somani. On the optimal placement of wavelength converters in wavelength-routed networks. In Proceedings of INFO-COM’ 98, pages 902–909, April 1998.Google Scholar
  29. 29.
    M. Ali and J. Deogun. Allocation of splitting nodes in wavelength-routed networks. Photonic Network Communications, 2(3):245–263, August 2000.Google Scholar
  30. 30.
    R. Ramaswami and K. N. Sivarajan. Design of logical topologies for wavelengthrouted optical networks. IEEE Journal Selected Areas in Communications, 14(5):840–851, June 1996.Google Scholar
  31. 31.
    D. Banerjee and B. Mukherjee. A practical approach for routing and wavelength assignment in large wavelength-routed optical networks. IEEE Journal Selected Areas in Communications, 14(5):903–908, June 1996.Google Scholar
  32. 32.
    B. Mukherjee et al. Some principles for designing a wide-area WDM optical network. IEEE/ACM Transactions on Networking, 4(5):684–696, October 1996.Google Scholar
  33. 33.
    Z. Zhang and A. Acampora. A heuristic wavelength assignment algorithm for multihop WDM networks with wavelength routing and wavelength reuse. IEEE/ACM Transactions on Networking, 3(3):281–288, June 1995.Google Scholar
  34. 34.
    I. Chlamtac, A. Ganz, and G. Karmi. Lightnets: Topologies for high-speed optical networks. Journal of Lightwave Technology, 11:951–961, May/June 1993.Google Scholar
  35. 35.
    S. Banerjee and B. Mukherjee. Algorithms for optimized node placement in shufflenet-based multihop lightwave networks. In Proceedings of INFOCOM’ 93, March 1993.Google Scholar
  36. 36.
    R. Malli, X. Zhang, and C. Qiao. Benefit of multicasting in all-optical networks. In Proceedings of SPIE, volume 3531, pages 209–220, November 1998.Google Scholar
  37. 37.
    G. Sahin and M. Azizoglu. Multicast routing and wavelength assignment in widearea networks. In Proceedings of SPIE, volume 3531, pages 196–208, November 1998.Google Scholar
  38. 38.
    E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 1976.Google Scholar
  39. 39.
    D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, Inc., Englewood Cliffs, NJ, 1992.zbMATHGoogle Scholar
  40. 40.
    X. Zhang, J. Y. Wei, and C. Qiao. Constrained multicast routing in WDM networks with sparse light splitting. Journal of Lightwave Technology, 18(12):1917–1927, December 2000.Google Scholar
  41. 41.
    J. Strand, A. L. Chiu, and R. Tkach. Issues for routing in the optical layer. IEEE Communications, pages 81–96, February 2001.Google Scholar
  42. 42.
    J. Moy. OSPF version 2. RFC 2328, April 1998.Google Scholar
  43. 43.
    A. Chiu et al. Impairments and other constraints on optical layer routing. IETF Draft <draft-ietf-ipo-impairments-00.txtτ;, May 2001. Work in progress.Google Scholar
  44. 44.
    Y. Zhu, G. N. Rouskas, and H. G. Perros. A comparison of allocation policies in wavelength routing networks. Photonic Network Communications, 2(3):265–293, August 2000.Google Scholar
  45. 45.
    Z. Zhang, J. Fu, D. Guo, and L. Zhang. Lightpath routing for intelligent optical networks. IEEE Network, 15(4):28–35, July/August 2001.Google Scholar
  46. 46.
    C. Assi, M. Ali, R. Kurtz, and D. Guo. Optical networking and real-time provisioning: An integrated vision for the next-generation internet. IEEE Network, 15(4):36–45, July/August 2001.Google Scholar
  47. 47.
    S. Sengupta and R. Ramamurthy. From network design to dynamic provisioning and restoration in optical cross-connect mesh networks: An architectural and algorithmic overview. IEEE Network, 15(4):46–54, July/August 2001.Google Scholar
  48. 48.
    The internet engineering task force. http://www.ietf.org.
  49. 49.
    Optical domain service interconnect. http://www.odsi-coalition.com.
  50. 50.
    The optical internetworking forum. http://www.oiforum.com.
  51. 51.
    G. Bernstein, R. Coltun, J. Moy, A. Sodder, and K. Arvind. ODSI functional specification version 1.4. ODSI Coalition, August 2000.Google Scholar
  52. 52.
    User network interface (UNI) 1.0 signaling specification. OIF2000.125.6, September 2001.Google Scholar
  53. 53.
    B. Rajagopalan et al. IP over optical networks-a framework. IETF Draft <draft-many-ip-optical-framework-03.txt>, March 2001. Work in progress.Google Scholar
  54. 54.
    J. P. Lang et al. Link management protocol (LMP). IETF Draft <draft-ietf-mpls-lmp-02.txt>, September 2001. Work in progress.Google Scholar
  55. 55.
    K. Kompella et al. OSPF extensions in support of generalized MPLS. IETF Draft <draft-ietf-ccamp-ospf-gmpls-extensions-00.txt>, September 2001. Work in progress.Google Scholar
  56. 56.
    D. Katz, D. Yeung, and K. Kompella. Traffic engineering extensions to OSPF. IETF Draft <draft-katz-yeung-ospf-traffic-06.txt>, October 2001. Work in progress.Google Scholar
  57. 57.
    D. Awduche et al. RSVP-TE: Extensions to RSVP for LSP tunnels. IETF Draft <draft-ietf-mpls-rsvp-lsp-tunnel-08.txt>, February 2001. Work in progress.Google Scholar
  58. 58.
    O. Aboul-Magd et al. Constraint-based LSP setup using LDP. IETF Draft <draft-ietf-mpls-cr-ldp-05.txt>, February 2001. Work in progress.Google Scholar
  59. 59.
    R. Braden et al. Resource reservation protocol-version 1. RFC 2205, September 1997.Google Scholar
  60. 60.
    L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas. LDP specification. RFC 3036, January 2001.Google Scholar
  61. 61.
    P. Ashwood-Smith et al. Generalized MPLS signaling-RSVP-TE extensions. IETF Draft <draft-ietf-mpls-generalized-rsvp-te-05.txt>, October 2001. Work in progress.Google Scholar
  62. 62.
    P. Ashwood-Smith et al. Generalized MPLS signaling-CR-LDP extensions. IETF Draft <draft-ietf-mpls-generalized-cr-ldp-04.txt>, July 2001. Work in progress.Google Scholar
  63. 63.
    B. Rajagopalan, J. Luciani, D. Awduche, B. Cain, B. Jamoussi, and D. Saha. IP over optical networks: A framework. IETF Draft <draft-ietf-ipo-framework-01.txt>, February 2002. Work in progress.Google Scholar
  64. 64.
    H. Perros. An Introduction to ATM Networks. Wiley, 2001.Google Scholar
  65. 65.
    D. Durham (Ed.), J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The COPS (common open policy service) protocol. RFC 2748, January 2000.Google Scholar
  66. 66.
    S. Herzog (Ed.), J. Boyle, R. Cohen, D. Durham, R. Rajan, and A. Sastry. COPS usage for RSVP. RFC 2749, January 2000.Google Scholar
  67. 67.
    S. Yao, S. Dixit, and B. Mukherjee. Advances in photonic packet switching: An overview. IEEE Communications, 38(2):84–94, February 2000.Google Scholar
  68. 68.
    H. Perros. Queueing Networks with Blocking: Exact and Approximate Solutions. Oxford University Press, 1994.Google Scholar
  69. 69.
    L. Xu, H. G. Perros, and G. N. Rouskas. Techniques for optical packet switching and optical burst switching. IEEE Communications, 39(1):136–142, January 2001.Google Scholar
  70. 70.
    S. L. Danielsen et al. Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tunable wavelength converters. IEEE/OSA Journal of Lightwave Technology, 16(5):729–735, May 1998.Google Scholar
  71. 71.
    I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson. JumpStart: A just-in-time signaling architecture for WDM burst-switched networks. IEEE Communications, 40(2):82–89, February 2002.Google Scholar
  72. 72.
    C. Qiao and M. Yoo. Optical burst switching (OBS)-A new paradigm for an optical Internet. Journal of High Speed Networks, 8(1):69–84, January 1999.Google Scholar
  73. 73.
    J. Y. Wei and R. I. McFarland. Just-in-time signaling for WDM optical burst switching networks. Journal of Lightwave Technology, 18(12):2019–2037, December 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • George N. Rouskas
    • 1
  • Harry G. Perros
    • 1
  1. 1.Department of Computer ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations