Welch, R.M., Kuo K. S., Sengupta S. K., and Chen D. W.: Cloud field classification based upon high spatial resolution textural feature (I): Gray-level cooccurrence matrix approach. J. Geophys. Res., vol. 93, (oct.1988) 12633–81.
Google Scholar
Lee J., Weger R. C., Sengupta S. K. And Welch R.M.: A Neural Network Approach to Cloud Classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 5, pp. 846–855, Sept. 1990.
CrossRef
Google Scholar
M. Macías, F.J. López, A. Serrano and A. Astillero: “A Comparative Study of two Neural Models for Cloud Screening of Iberian Peninsula Meteosat Images”, Lecture Notes in Computer Science 2085, Bio-inspired applications of connectionism, pp. 184–191, 2001.
Google Scholar
A. Astillero, A Serrano, M. Núñez, J.A. García, M. Macías and H.M. Gónzalez: “A Study of the evolution of the cloud cover over Cáceres (Spain) along 1997, estimated from Meteosat images”, Proceedings of the 2001 EUMETSAT Meteorological Satellite Data Users’ Conference, pp. 353–359, 2001
Google Scholar
Bankert, R. L et al.,: Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network. Journal of Applied. Meteorology, 33, (1994) 909–918.
CrossRef
Google Scholar
B. Tian, M. A. Shaikh, M R. Azimi, T. H. Vonder Haar, and D. Reinke, “An study of neural network-based cloud classification using textural and spectral features,” IEE trans. Neural Networks, vol. 10, pp. 138–151, 1999.
CrossRef
Google Scholar
B. Tian, M. R. Azimi, T. H. Vonder Haar, and D. Reinke, “Temporal Updating Scheme for Probabilistic Neural Network with Application to Satellite Cloud Classification,” IEEE trans. Neural Networks, Vol. 11, no. 4, pp. 903–918, Jul. 2000.
CrossRef
Google Scholar
R. M. Welch et al., “Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods,” J. Appl. Meteorol., vol. 31, pp. 405–420, May 1992.
Google Scholar
N. Lamei et al., “Cloud-type discrimitation via multispectral textural analysis,” Opt. Eng., vol. 33, pp. 1303–1313, Apr. 1994.
Google Scholar
R. M. Haralick et al., “Textural features for image classification”, IEEE trans. Syst., Man, Cybern., vol. SMC-3, pp. 610–621, Mar. 1973.
Google Scholar
M. F. Augfieijin, “Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural.network classifier,” IEEE trans. Geosc. Remote Sensing, vol. 33, pp. 616–625, May 1995.
Google Scholar
Doak J. An evaluatin of feature selection methods and their application to computer security (Technical Repor CSE-92-18). Davis, CA: University of California, Department of Computer Science.
Google Scholar
Aha, D. W., and Bankert, R. L.: A Comparative Evaluation of Sequential Feature Selection Algorithms. Artificial Intelligence and Statistics V., D. Fisher and J. H. Lenz, editors. Springer-Verlag, New York, 1996.
Google Scholar
Eng Hock Tay F. and Li Juan Cao, A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines”, Intelligent Data Analysis, vol. 5, no. 3, pp. 191–209, 2001.
MATH
Google Scholar
A. Tettamanzi, M. Tomassini. Soft Computing. Integrating Evolutionary, Neural and Fuzzy Systems. Springer, 2001.
Google Scholar
F.Z._Brill, D.E. Brown and W.N. Martin. Fast genetic selection of features for neural network classifiers. IEEE Transactions on Neural Networks, 3(2): 324–328, 1992.
CrossRef
Google Scholar
M. Riedmiller, M., Braun, L.: A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In Proceedings of the IEEE International Conference on Neural Networks 1993 (ICNN 93), 1993.
Google Scholar
R. Bellman: “Adaptive Control Processes: A Guided Tour”. New Jersey, Princeton University Press.
Google Scholar
I. T. Jolliffe: Principal Component Analysis, Springer-Verlag, 271 pp., 1986.
Google Scholar
H. F. Kaiser: “The application of electronic computer to factor analysis”, Educ. Psycol. Meas., vol. 20, pp.141–151, 1960.
CrossRef
Google Scholar
H. F. Kaiser, “The Varimax criterion for analytic rotation in factor analysis”, Psychometrika, vol. 23, pp. 187–200, 1958.
MATH
CrossRef
Google Scholar
D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning. Addison Wesley, 1989.
Google Scholar
D. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm Library. Research Report ANL-95/18. Argonne National Laboratory, 1996.
Google Scholar