Yang, Y., Slattery, S., Ghani, R.: A study of approaches to hypertext categorization. Journal of Intelligent Information Systems. Kluwer Academic Press (2002)
Google Scholar
Lewis, D.: Naive bayes at forty: The independence assumption in information retrieval. In N’edellec, C., Rouveirol, C., eds.: Proceedings of ECML-98, 10th European Conference on Machine Learning. Volume 1398.25., Springer Verlag, Heidelberg, DE (1998) 4–15
Google Scholar
Domingos, P., Pazzani, M.J.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103–130
MATH
CrossRef
Google Scholar
Turtle, H., Croft, W.: Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems 9 (1991) 187–222
CrossRef
Google Scholar
Rish, I., Hellerstein, J., Thathachar, J.: An analysis of data characteristics that affect naive bayes performance. In N’edellec, C., Rouveirol, C., eds.: Proceedings of the Eighteenth Conference on Machine Learning-ICML2001, Morgan Kaufmann (2001)
Google Scholar
M. Bressan, D. Guillamet, J. Vitria: Using an ica representation of high dimensional data for object recognition and classification. In: IEEE CSC in Computer Vision and Pattern Recognition (CVPR 2001). Volume 1. (2001) 1004–1009
Google Scholar
Bell, A., Sejnowski, T.: An information-maximization approach for blind signal separation. Neural Computation 7 (1995) 1129–1159
CrossRef
Google Scholar
Field, D.: What is the goal of sensory coding? Neural Computation 6 (1994) 559–601
CrossRef
Google Scholar
Hyvärinen, A.: Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation 11 (1999) 1739–1768
CrossRef
Google Scholar
Vigario, R., Jousmäki, V., Hämäläinen, M., Hari, R., Oja, E.: Independent component analysis for identification of artifacts in magnetoencephalographic recordings. Advances in Neural Information Processing Systems 10 (1998) 229–235
Google Scholar
Blake, C., Merz, C.: Uci repository of machine learning databases (1998)
Google Scholar
LeCun, Y., Labs-Research, A.: The MNIST DataBase of Handwritten digits. http://www.research.att.com/ yann/ocr/mnist/index.html (1998)
Scott, D.W.: Multivariate Density Estimation. John Wiley and sons, New York, NY (1992)
MATH
Google Scholar
Duda, R., Hart, P., Stork, D.: Pattern Classication. John Wiley and Sons, Inc., New York, 2nd edition (2001)
Google Scholar
Simpson, E.: The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Ser. B 13 (1951) 238–241
MATH
MathSciNet
Google Scholar
Bell, A., Sejnowski, T.: The ‘independent components’ of natural scenes are edge filters. Neural Computation 11 (1999) 1739–1768
CrossRef
Google Scholar
Lee, T., Lewicki, M., Seynowski, T.: A mixture models for unsupervised classification of non-gaussian sources and automatic context switching in blind signal separation. IEEE Transactions on PAMI 22 (2000) 1–12
Google Scholar
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons (2001)
Google Scholar
Comon, P.: Independent component analysis-a new concept? Signal Processing 36 (1994) 287–314
MATH
CrossRef
Google Scholar
Hyvärinen, A.: New approximatins of differential entropy for independent component analysis and projection pursuit. Advances in Neural Processing Systems 10 (1998) 273–279
Google Scholar
Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Trans. on Information Theory 9 (1963) 1–17
CrossRef
Google Scholar
Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. on Communication Technology COM-15 1 (1967) 52–60
CrossRef
Google Scholar
Swain, P., King, R.: Two effective feature selection criteria for multispectral remote sensing. In: Proceedings of the 1st International Joint Conference on Pattern Recognition, IEEE 73 CHO821-9. (1973) 536–540
Google Scholar
Swain, P., Davis, S.: Remote sensing: the quantitative approach. McGraw-Hill (1978)
Google Scholar