Skip to main content

Summary

We consider two basic types of coarse-graining: the Ehrenfests’ coarse-graining and its extension to a general principle of non-equilibrium thermodynamics, and the coarse-graining based on uncertainty of dynamical models and ɛ-motions (orbits). Non-technical discussion of basic notions and main coarse-graining theorems are presented: the theorem about entropy overproduction for the Ehrenfests’ coarse-graining and its generalizations, both for conservative and for dissipative systems, and the theorems about stable properties and the Smale order for ɛ-motions of general dynamical systems including structurally unstable systems. Computational kinetic models of macroscopic dynamics are considered. We construct a theoretical basis for these kinetic models using generalizations of the Ehrenfests’ coarsegraining. General theory of reversible regularization and filtering semigroups in kinetics is presented, both for linear and non-linear filters. We obtain explicit expressions and entropic stability conditions for filtered equations. A brief discussion of coarse-graining by rounding and by small noise is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ehrenfest, T. Ehrenfest-Afanasyeva: The Conceptual Foundations of the Statistical Approach in Mechanics, In: Mechanics Enziklopädie der Mathematischen Wissenschaften, vol. 4. (Leipzig 1911). Reprinted: P. Ehrenfest, T. Ehrenfest-Afanasyeva, The Conceptual Foundations of the Statistical Approach in Mechanics (Dover, Phoneix 2002)

    Google Scholar 

  2. H. Grabert: Projection operator techniques in nonequilibrium statistical mechanics (Springer, Berlin Heidelberg New York 1982)

    Google Scholar 

  3. A.N. Gorban, I.V. Karlin, A.Yu. Zinovyev: Constructive methods of invariant manifolds for kinetic problems. Phys. Reports 396, 197–403 (2004) Preprint online: http://arxiv.org/abs/cond-mat/0311017.

    Article  MathSciNet  ADS  Google Scholar 

  4. A.N. Gorban, I.V. Karlin: Invariant manifolds for physical and chemical kinetics, Lect. Notes Phys., vol. 660 (Springer, Berlin, Heidelberg, New York 2005)

    MATH  Google Scholar 

  5. A.N. Gorban, I.V. Karlin, P. Ilg, H.C. Öttinger: Corrections and enhancements of quasi-equilibrium states. J. Non-Newtonian Fluid Mech. 96, 203–219 (2001)

    Article  MATH  Google Scholar 

  6. K.G. Wilson, J. Kogut: The renormalization group and the ε-expansion. Phys. Reports 12C, 75–200 (1974)

    Article  ADS  Google Scholar 

  7. O. Pashko, Y. Oono: The Boltzmann equation is a renormalization group equation. Int. J. Mod. Phys. B 14, 555–561 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  8. Y. Hatta, T. Kunihiro: Renormalization group method applied to kinetic equations: roles of initial values and time. Annals Phys. 298, 24–57 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, C. Theodoropoulos: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Comm. Math. Sci. 1, 715–762 (2003)

    MATH  MathSciNet  Google Scholar 

  10. A.J. Chorin, O.H. Hald, R. Kupferman: Optimal prediction with memory. Physica D 166, 239–257 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. A.N. Gorban, I.V. Karlin, H.C. Öttinger, L.L. Tatarinova: Ehrenfests’ argument extended to a formalism of nonequilibrium thermodynamics. Phys.Rev.E 63, 066124 (2001)

    Google Scholar 

  12. A.N. Gorban, I.V. Karlin: Uniqueness of thermodynamic projector and kinetic basis of molecular individualism. Physica A 336, 391–432 (2004)

    Article  ADS  Google Scholar 

  13. J. Leray: Sur les movements dun fluide visqueux remplaissant lespace. Acta Mathematica 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Smagorinsky: General Circulation Experiments with the Primitive Equations: I. The Basic Equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  ADS  Google Scholar 

  15. M. Germano: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. D. Carati, G.S. Winckelmans, H. Jeanmart: On the modelling of the subgridscale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech. 441, 119–138 (2001)

    Article  MATH  ADS  Google Scholar 

  17. M. Lesieur, O. Métais, P. Comte: Large-Eddy Simulations of Turbulence (Cambridge University Press 2005)

    Google Scholar 

  18. S. Ansumali, I.V. Karlin, S. Succi: Kinetic Theory of Turbulence Modeling: Smallness Parameter, Scaling and Microscopic Derivation of Smagorinsky Model. Physica A, 338, 379–394 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Succi: The lattice Boltzmann equation for fluid dynamics and beyond (Clarendon Press, Oxford 2001)

    MATH  Google Scholar 

  20. S. Smale: Structurally stable systems are not dense, Amer. J. Math. 88, 491–496 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  21. V.A. Dobrynskii, A.N. Sharkovskii: Genericity of the dynamical systems almost all orbits of which are stable under sustained perturbations. Soviet Math. Dokl. 14, 997–1000 (1973)

    MATH  Google Scholar 

  22. A.N. Gorban: Slow relaxations and bifurcations of omega-limit sets of dynamical systems, PhD Thesis in Physics & Math. (Differential Equations & Math.Phys), Kuibyshev, Russia (1980)

    Google Scholar 

  23. A.N. Gorban: Singularities of Transition Processes in Dynamical Systems: Qualitative Theory of Critical Delays, Electronic Journal of Differential Equations, Monograph 05, (2004) http://ejde.math.txstate.edu/Monographs/05/abstr.html (Includes English translation of [22].)

    Google Scholar 

  24. B.A. Huberman, W.F. Wolff: Finite precision and transient behavior. Phys. Rev. A 32, 3768–3770 (1985)

    Article  ADS  Google Scholar 

  25. C. Beck, G. Roepsorff: Effects of phase space discretization on the long-time behavior of dynamical systems. Physica D 25, 173–180 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. C. Grebogi, E. Ott, J.A. Yorke: Roundoff-induced periodicity and the correlation dimension of chaotic attractors. Phys. Rev. A 38, 3688–3692 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Diamond, P. Kloeden, A. Pokrovskii, A. Vladimirov: Collapsing effect in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre. Physica D 86, 559–571 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Longa, E.M.F. Curado, A. Oliveira: Rounoff-induced coalescence of chaotic trajectories. Phys. Rev. E 54, R2201–R2204 (1996)

    Article  ADS  Google Scholar 

  29. P.-M. Binder, J.C. Idrobo: Invertibility of dynamical systems in granular phase space. Phys. Rev. E 58, 7987–7989 (1998)

    Article  ADS  Google Scholar 

  30. C. Dellago, Wm.G. Hoover: Finite-precision stationary states at and away from equilibrium. Phys. Rev. E 62, 6275–6281 (2000)

    Article  ADS  Google Scholar 

  31. B. Bollobas: Random Graphs, Cambridge Studies in Advanced Mathematics (Cambridge University Press 2001)

    Google Scholar 

  32. M.I. Freidlin, A.D. Wentzell: Random Perturbations of Dynamical Systems, Grundlehren der mathematischen Wissenschaften, vol. 260 (Springer, Berlin, Heidelberg, New York 1998)

    MATH  Google Scholar 

  33. L. Arnold: Random Dynamical Systems, Springer Monographs in Mathematics, vol. 16, (Springer, Berlin, Heidelberg, New York 2002)

    MATH  Google Scholar 

  34. A.N. Gorban: Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis (Nauka, Novosibirsk 1984)

    Google Scholar 

  35. A.N. Gorban, V.I. Bykov, G.S. Yablonskii: Essays on chemical relaxation (Nauka, Novosibirsk 1986)

    Google Scholar 

  36. G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin: Kinetic Models of Catalytic Reactions, Series Comprehensive Chemical Kinetics, vol. 32, ed. by R.G. Compton, (Elsevier, Amsterdam 1991)

    Google Scholar 

  37. Y.B. Zeldovich: Proof of the Uniqueness of the Solution of the Equations of the Law of Mass Action, In: Selected Works of Yakov Borisovich Zeldovich, ed. by J.P. Ostriker, vol. 1, 144–148 (Princeton University Press, Princeton 1996)

    Google Scholar 

  38. P.L. Bhatnagar, E.P. Gross, M. Krook: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94, 511–525 (1954)

    Article  MATH  ADS  Google Scholar 

  39. A.N. Gorban, I.V. Karlin: General approach to constructing models of the Boltzmann equation. Physica A, 206, 401–420 (1994)

    Article  ADS  Google Scholar 

  40. D. Hilbert: Begründung der kinetischen Gastheorie. Math. Annalen 72, 562–577 (1912)

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Ruelle: Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. S. Kullback: Information theory and statistics (Wiley, New York 1959)

    MATH  Google Scholar 

  43. A.N. Gorban, I.V. Karlin: Family of additive entropy functions out of thermodynamic limit. Phys. Rev. E 67, 016104 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  44. P. Gorban: Monotonically equivalent entropies and solution of additivity equation. Physica A 328, 380–390 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. S. Abe, Y. Okamoto (Eds.), Nonextensive statistical mechanics and its applications (Springer, Berlin Heidelberg New York 2001)

    MATH  Google Scholar 

  46. B.M. Boghosian, P.J. Love, P.V. Coveney, I.V. Karlin, S. Succi, J. Yepez: Galilean-invariant lattice-Boltzmann models with H-theorem. Phys. Rev. E 68, 025103(R) (2003)

    Article  ADS  Google Scholar 

  47. G.W. Gibbs: Elementary Principles of Statistical Mechanics (Dover, Phoenix 1960)

    MATH  Google Scholar 

  48. E.T. Jaynes: Information theory and statistical mechanics, in: Statistical Physics. Brandeis Lectures, vol. 3, ed. by K. W. Ford, 160–185 (Benjamin, New York 1963)

    Google Scholar 

  49. D. Zubarev, V. Morozov, G. Röpke: Statistical mechanics of nonequilibrium processes, vol. 1 (Akademie Verlag, Berlin 1996), vol. 2 (Akademie Verlag, Berlin 1997)

    MATH  Google Scholar 

  50. H. Grad: On the kinetic theory of rarefied gases. Comm. Pure and Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  51. J.T. Alvarez-Romero, L.S. García-Colín: The foundations of informational statistical thermodynamics revisited. Physica A 232, 207–228 (1996)

    Article  ADS  Google Scholar 

  52. R.E. Nettleton, E.S. Freidkin: Nonlinear reciprocity and the maximum entropy formalism. Physica A 158, 672–690 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  53. N.N. Orlov, L.I. Rozonoer: The macrodynamics of open systems and the variational principle of the local potential. J. Franklin Inst. 318, 283–314 and 315–347 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  54. A.M. Kogan, L.I. Rozonoer: On the macroscopic description of kinetic processes. Dokl. AN SSSR 158, 566–569 (1964)

    Google Scholar 

  55. A.M. Kogan: Derivation of Grad-type equations and study of their properties by the method of entropy maximization. Prikl. Matem. Mech. 29, 122–133 (1965)

    Google Scholar 

  56. L.I. Rozonoer: Thermodynamics of nonequilibrium processes far from equilibrium. In: Thermodynamics and Kinetics of Biological Processes, 169–186 (Nauka, Moscow 1980)

    Google Scholar 

  57. J. Karkheck, G. Stell: Maximization of entropy, kinetic equations, and irreversible thermodynamics. Phys. Rev. A 25, 3302–3327 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  58. N.N. Bugaenko, A.N. Gorban, I.V. Karlin: Universal Expansion of the Triplet Distribution Function. Teoret. i Matem. Fisika 88, 430–441 (1991) (Transl.: Theoret. Math. Phys. 977–985 (1992))

    MathSciNet  Google Scholar 

  59. A.N. Gorban, I.V. Karlin: Quasi-equilibrium approximation and non-standard expansions in the theory of the Boltzmann kinetic equation. In: Mathematical Modelling in Biology and Chemistry. New Approaches, ed. by R. G. Khlebopros, 69–117 (Nauka, Novosibirsk, 1991)

    Google Scholar 

  60. A.N. Gorban, I.V. Karlin: Quasi-equilibrium closure hierarchies for the Boltzmann equation. Physica A 360, 325–364 (2006) (Includes translation of the first part of [59])

    Article  MathSciNet  ADS  Google Scholar 

  61. C.D. Levermore: Moment Closure Hierarchies for Kinetic Theories J. Stat. Phys. 83, 1021–1065 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. R. Balian, Y. Alhassid, H. Reinhardt: Dissipation in many-body systems: A geometric approach based on information theory. Phys. Reports 131, 1–146 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  63. P. Degond, C. Ringhofer: Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112, 587–627 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  64. P. Ilg, I.V. Karlin, H.C. Öttinger: Canonical distribution functions in polymer dynamics: I. Dilute solutions of flexible polymers. Physica A 315, 367–385 (2002)

    Article  MATH  ADS  Google Scholar 

  65. P. Ilg, I.V. Karlin, M. Kröger, H.C. Öttinger: Canonical distribution functions in polymer dynamics: II Liquid-crystalline polymers. Physica A 319, 134–150 (2003)

    Article  MATH  ADS  Google Scholar 

  66. P. Ilg, M. Kröger: Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension, Phys. Rev. E 66, 021501 (2002); Erratum, Phys. Rev. E 67, 049901(E) (2003)

    Article  ADS  Google Scholar 

  67. P. Ilg, I.V. Karlin: Combined micro-macro integration scheme from an invariance principle: application to ferrofluid dynamics. J. Non-Newtonian Fluid Mech. 120, 33–40 (2004)

    Article  MATH  Google Scholar 

  68. B. Robertson: Equations of motion in nonequilibrium statistical mechanics. Phys. Rev. 144, 151–161 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  69. P.J. Morrison: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  70. E. Wigner: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  ADS  Google Scholar 

  71. A.O. Caldeira, A.J. Leggett: Influence of damping on quantum interference: An exactly soluble model. Phys. Rev. A 31, 1059–1066 (1985)

    Article  ADS  Google Scholar 

  72. A.N. Gorban, I.V. Karlin: Reconstruction lemma and fluctuation-dissipation theorem. Revista Mexicana de Fisica 48, 238–242 (2002)

    Google Scholar 

  73. A.N. Gorban, I.V. Karlin: Macroscopic dynamics through coarse-graining: A solvable example. Phys. Rev. E 56 026116 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  74. A.N. Gorban, I.V. Karlin: Geometry of irreversibility. in: Recent Developments in Mathematical and Experimental Physics, vol. C, ed. by F. Uribe, 19–43 (Kluwer, Dordrecht 2002)

    Google Scholar 

  75. A.N. Gorban, I.V. Karlin: Geometry of irreversibility: The film of nonequilibrium states, Preprint IHES/P/03/57, Institut des Hautes Études Scientifiques in Bures-sur-Yvette (France) (2003) Preprint on-line: http://arXiv.org/abs/cond-mat/0308331

    Google Scholar 

  76. I.V. Karlin, L.L. Tatarinova, A.N. Gorban, H.C. Öttinger: Irreversibility in the short memory approximation. Physica A 327, 399–424 (2003)

    Article  MATH  ADS  Google Scholar 

  77. J.L. Lebowitz: Statistical Mechanics: A Selective Review of Two Central Issues. Rev. Mod. Phys. 71, S346 (1999)

    Article  Google Scholar 

  78. S. Goldstein, J.L. Lebowitz: On the (Boltzmann) Entropy of Nonequilibrium Systems. Physica D 193, 53–66 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. S. Chapman, T. Cowling: Mathematical theory of non-uniform gases, Third edition (Cambridge University Press 1970)

    Google Scholar 

  80. C. Cercignani: The Boltzmann equation and its applications, (Springer, Berlin Heidelberg New York 1988)

    MATH  Google Scholar 

  81. L. Mieussens, H. Struchtrup: Numerical Comparison of Bhatnagar-Gross-Krook models with proper Prandtl number. Phys. Fluids 16, 2797–2813 (2004)

    Article  ADS  Google Scholar 

  82. R.M. Lewis: A unifying principle in statistical mechanics. J. Math. Phys. 8, 1448–1460 (1967)

    Article  MATH  ADS  Google Scholar 

  83. A.M. Lyapunov: The general problem of the stability of motion (Taylor & Francis, London 1992)

    MATH  Google Scholar 

  84. L.B. Ryashko, E.E. Shnol: On exponentially attracting invariant manifolds of ODEs Nonlinearity 16, 147–160 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  85. C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, E.S. Titi: On the computation of inertial manifolds. Phys. Lett. A 131, 433–436 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  86. Y. Sone: Kinetic theory and fluid dynamics (Birkhäuser, Boston 2002)

    MATH  Google Scholar 

  87. C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris: Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dynamical Systems 4, 711–732 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. F. Higuera, S. Succi, R. Benzi: Lattice gas-dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  ADS  Google Scholar 

  89. I.V. Karlin, A.N. Gorban, S. Succi, V. Boffi: Maximum entropy principle for lattice kinetic equations. Phys. Rev. Lett. 81, 6–9 (1998)

    Article  ADS  Google Scholar 

  90. H. Chen, S. Chen, W. Matthaeus: Recovery of the Navier-Stokes equation using a lattice-gas Boltzmann Method. Phys. Rev. A 45, R5339–R5342 (1992)

    Article  ADS  Google Scholar 

  91. Y.H. Qian, D. d’Humieres, P. Lallemand: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  ADS  MATH  Google Scholar 

  92. S. Succi, I.V. Karlin, H. Chen: Role of the H theorem in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys. 74, 1203–1220 (2002)

    Article  ADS  Google Scholar 

  93. I. V. Karlin, A. Ferrante, H.C. Öttinger: Perfect entropy functions of the Lattice Boltzmann method. Europhys. Lett. 47, 182–188 (1999)

    Article  ADS  Google Scholar 

  94. S. Ansumali, I.V. Karlin: Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107 291–308 (2002)

    Article  MATH  Google Scholar 

  95. R. Cools: An encyclopaedia of cubature formulas. J. of Complexity 19, 445–453 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  96. A. Gorban, B. Kaganovich, S. Filippov, A. Keiko, V. Shamansky, I. Shirkalin: Thermodynamic Equilibria and Extrema: Analysis of Attainability Regions and Partial Equilibrium (Springer, Berlin Heidelberg New York 2006)

    Google Scholar 

  97. S. Ansumali, I.V. Karlin: Kinetic Boundary condition for the lattice Boltzmann method. Phys. Rev. E 66, 026311 (2002)

    Google Scholar 

  98. J.R. Higgins: Sampling Theory in Fourier and Signal Analysis: Foundations (Clarendon, Oxford 1996)

    MATH  Google Scholar 

  99. J.R. Higgins, R.L. Stens: Sampling Theory in Fourier and Signal Analysis: Advanced Topics (Clarendon, Oxford 1999)

    MATH  Google Scholar 

  100. J.G.M. Kuerten, B.J. Geurts, A.W. Vreman, M. Germano: Dynamic inverse modeling and its testing in large-eddy simulations of the mixing layer. Phys. Fluids 11 3778–3785 (1999)

    Article  ADS  MATH  Google Scholar 

  101. A.W. Vreman: The adjoint filter operator in large-eddy simulation of turbulent flow. Phys. Fluids 16, 2012–2022 (2004)

    Article  ADS  Google Scholar 

  102. B.J. Geurts, D.D. Holm: Nonlinear regularization for large-eddy simulation. Phys. Fluids 15, L13–L16 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  103. P. Moeleker, A. Leonard: Lagrangian methods for the tensor-diffusivity subgrid model. J. Comp. Phys. 167, 1–21 (2001)

    Article  MATH  ADS  Google Scholar 

  104. G. Berkooz, P. Holmes, J.L. Lumley: The proper orthogonal decomposition in the analysis of turbulent flows. Annual Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  105. I.T. Jolliffe: Principal component analysis (Springer, Berlin Heidelberg New York 1986)

    MATH  Google Scholar 

  106. K. Kunisch, S. Volkwein: Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics. SIAM J Numer. Anal. 40, 492–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  107. M. Marion, R. Temam: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26, 1139–1157 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  108. A. Gorban, A. Zinovyev: Elastic Principal Graphs and Manifolds and their Practical Applications. Computing 75, 359–379 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  109. G.D. Birkhoff: Dynamical systems (AMS Colloquium Publications, Providence 1927) Online: http://www.ams.org/online bks/coll9/

    MATH  Google Scholar 

  110. B. Hasselblatt, A. Katok, (Eds.): Handbook of Dynamical Systems (Elsevier 2002)

    Google Scholar 

  111. A. Katok, B. Hasselblat: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Math. and its Applications, vol. 54 (Cambridge University Press 1995)

    Google Scholar 

  112. J. Milnor: On the concept of attractor. Comm. Math. Phys. 99, 177–195 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  113. P. Ashwin and J.R. Terry: On riddling and weak attractors. Physica D 142, 87–100 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  114. D.V. Anosov: About one class of invariant sets of smooth dynamical systems. In: Proceedings of International conference on non-linear oscillation, vol. 2, 39–45 (Kiev 1970)

    MATH  Google Scholar 

  115. P. Walters: On the pseudoorbit tracing property and its relationship to stability. In: Lect. Notes Math. vol. 668, 231–244 (Springer, Berlin Heidelberg New York 1978)

    Google Scholar 

  116. J.E. Franke, J.F. Selgrade: Hyperbolicity and chain recurrence. J. Different. Equat. 26, 27–36 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  117. H. Easton: Chain transitivity and the domain of influence of an invariant set. In: Lect. Notes Math., vol. 668, 95–102 (Springer, Berlin Heidelberg New York 1978)

    Google Scholar 

  118. Y. Sinai: Gibbs measures in ergodic theory. Russ. Math. Surveys 166, 21–69 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  119. I.G. Malkin: On the stability under uniformly influencing perturbations. Prikl. Matem. Mech. 8, 241–245 (1944)

    MATH  MathSciNet  Google Scholar 

  120. V.E. Germaidze, N.N. Krasovskii: On the stability under sustained perturbations. Prikl. Matem. Mech. 21, 769–775 (1957)

    MathSciNet  Google Scholar 

  121. I.G. Malkin: The motion stability theory (Nauka, Moscow 1966)

    Google Scholar 

  122. A. Strauss, A.J. Yorke: Identifying perturbations which preserved asymptotic stability. Proc. Amer. Math. Soc. 22, 513–518 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  123. M. Gromov: Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152 (Birkhauser Boston, Inc., Boston 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorban, A.N. (2006). Basic Types of Coarse-Graining. In: Gorban, A.N., Kevrekidis, I.G., Theodoropoulos, C., Kazantzis, N.K., Öttinger, H.C. (eds) Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35888-9_7

Download citation

Publish with us

Policies and ethics