Advertisement

Clinical Applications of High-Energy Electrons

  • Bruce J. Gerbi
Part of the Medical Radiology book series (MEDRAD)

Keywords

Radiat Oncol Biol Phys Electron Field Photon Field Percentage Depth Dose Isodose Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Able CM, Mills MD, McNeese MD, Hogstrom KR (1991) Evaluation of a total scalp electron irradiation technique. Int J Radiat Oncol Biol Phys 21:1063–1072PubMedGoogle Scholar
  2. Akazawa C (1989) Treatment of the scalp using photon and electron beams. Med Dosim. 14(2):129–131PubMedGoogle Scholar
  3. Almond PR (1976) Radiation physics of electron beams. In: Tapley N (ed) Clinical application of the electron beam. John Wiley & Sons, New YorkGoogle Scholar
  4. American Association of Physicists in Medicine (1987) American Association of Physicists in Medicine: Report 23. Total skin electron therapy: technique and dosimetry. American Institute of Physics, New YorkGoogle Scholar
  5. American Association of Physicists in Medicine (1991) American Association of Physicists in Medicine: Task Group 25 Report. Clinical electron beam dosimetry. Med Phys 18:73–109CrossRefGoogle Scholar
  6. Antolak JA, Scrimger JW, Mah E (1992) Optimization of a cord shielding technique for electrons. Australas Phys Eng Sci Med 15:91–94PubMedGoogle Scholar
  7. Antolak JA, Cundiff JH, Ha CS (1998) Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides. Int J Radiat Oncol Biol Phys. 40:101–108PubMedCrossRefGoogle Scholar
  8. Archambeau JO, Forell B, Doria R, et al. (1981) Use of variable thickness bolus to control electron beam penetration in chest wall irradiation. Int J Radiat Oncol Biol Phys 7:835–842PubMedGoogle Scholar
  9. Boone ML, Jardine JH, Wright AE, Tapley ND (1967) Highenergy electron dose perturbations in regions of tissue heterogeneity. I. In vivo dosimetry. Radiology 88:1136–1145PubMedGoogle Scholar
  10. Boone ML, Almond PR, Wright AE (1969) High-energy electron dose perturbations in regions of tissue heterogeneity. Ann N Y Acad Sci 161:214–232PubMedGoogle Scholar
  11. Brahme A, Svensson H (1976) Specification of electron beam quality from the central-axis depth absorbed-dose distribution. Med Phys 3:95–102PubMedCrossRefGoogle Scholar
  12. Chobe R, McNeese M, Weber R, Fletcher GH (1988) Radiation therapy for carcinoma of the nasal vestibule. Otolaryngol Head Neck Surg 98:67–71PubMedGoogle Scholar
  13. Dutreix J (1970) Dosimetry. In: Gil G, Gayarre G (eds) Symposium on high-energy electrons. General Directorate of Health, MadridGoogle Scholar
  14. Duvic M, Apisarnthanarax N, Cohen DS, Smith TL, Ha CS, Kurzrock R (2003) Analysis of long-term outcomes of combined modality therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol. 49:35–49PubMedCrossRefGoogle Scholar
  15. Ekstrand KE, Dixon RL (1982) The problem of obliquely incident beams in electron-beam treatment planning. Med Phys 9:276–278PubMedCrossRefGoogle Scholar
  16. Ellis RJ, Nag S, Kinsella TJ (2000) Alternative techniques of intraoperative radiotherapy. Eur J Surg Oncol Nov 26Suppl A:S25–S27Google Scholar
  17. Gahbauer R, Landberg T, Chavaudra J, Dobbs J, et al. (2004) Prescribing, recording, and reporting electron beam therapy. J ICRU vol.4Google Scholar
  18. Gerbi BJ, Khan FM, Deibel FC, Kim TH (1989) Total skin electron arc irradiation using a reclined patient position. Int J Radiat Oncol Biol Phys. 17(2):397–404PubMedGoogle Scholar
  19. Giarratano JC, Duerkes RJ, Almond PR (1975) Lead shielding thickness for dose reduction of 7-to 28MeV electrons. Med Phys 2:336–337PubMedCrossRefGoogle Scholar
  20. Hogstrom KR (1991) Clinical electron beam dosimetry: basic dosimetry date. In: Purdy JA (ed) Advances in radiation oncology physics: dosimetry, treatment planning, and brachytherapy. American Institute of Physics, Inc., Woodbury, pp 390–429Google Scholar
  21. Hogstrom KR (2004) Electron beam therapy: dosimetry, planning, and techniques. In: CA Perez, Brady LW, Halperin EC, Schmidt-Ullrich RK (eds) Principles and practice of radiation oncology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  22. Hogstrom KR, Fields RS (1983) Use of CT in electron beam treatment planning: current and future development. In: Ling CC, Rogers CC, Morton RJ (eds) Computed tomography in radiation therapy. Raven, NYGoogle Scholar
  23. Hoppe RT (2003) Mycosis fungoides: radiation therapy (review). Dermatol Ther 16:347–354PubMedCrossRefGoogle Scholar
  24. International Commission on Radiation Units and Measurements (1984) ICRU Report No. 35: radiation dosimetry: electron beams with energies between 1 and 50 MeV. International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  25. International Commission on Radiation Units and Measurements (1993) ICRU Report 50: prescribing, recording, and reporting photon beam therapy. International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  26. International Commission on Radiation Units and Measurements (1999) ICRU Report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  27. Johnson JM, Khan FM (1994) Dosimetric effects of abutting extended source to surface distance electron fields with photon fields in the treatment of head and neck cancers. Int J Radiat Oncol Biol Phys 28:741–747PubMedGoogle Scholar
  28. Khan FM (1982) Calibration and treatment planning of electron beam arc therapy. In: Paliwal B (ed) Proceedings of the symposium on electron dosimetry and arc therapy. AAPM. American Institute of Physics, New York, p 249Google Scholar
  29. Khan FM (1984) The physics of radiation therapy. Williams & Wilkins, BaltimoreGoogle Scholar
  30. Khan FM (2003) The physics of radiation therapy, 3rd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  31. Khan FM, Moore VC, Levitt SH (1976) Field shaping in electron beam therapy. Br J Radiol 49:883PubMedCrossRefGoogle Scholar
  32. Khan FM, Fullerton GD, Lee JM, Moore VC, Levitt SH (1977) Physical aspects of electron-beam arc therapy. Radiology 124:497–500PubMedGoogle Scholar
  33. Khan FM, Deibel FC, Soleimani-Meigooni A (1985) Obliquity correction for electron beams. Med Phys 12:749PubMedCrossRefGoogle Scholar
  34. Klevenhagen SC (1985) Physics of electron beam therapy. Adam Hilger, Ltd., BristolGoogle Scholar
  35. Klevenhagen SC, Lambert GD, Arbabi A (1982) Backscattering in electron beam therapy for energies between 3 and 35 MeV. Phys Med Biol 27:363–373PubMedCrossRefGoogle Scholar
  36. Kudchadker RJ, Hogstrom KR, Garden AS, McNeese MD, Boyd RA, Antolak JA (2002) Electron conformal radiotherapy using bolus and intensity modulation. Int J Radiat Oncol Biol Phys 53:1023–1037PubMedCrossRefGoogle Scholar
  37. Kudchadker RJ, Antolak JA, Morrison WH, Wong PF, Hogstrom KR (2003) Utilization of custom electron bolus in head and neck radiotherapy. J Appl Clin Med Phys A4:321–333CrossRefGoogle Scholar
  38. Lambert GD, Klevenhagen SC (1982) Penetration of backscattered electrons in polystyrene for energies between 1 and 25 MeV. Phys Med Biol 27:721–725CrossRefGoogle Scholar
  39. Leavitt DD, Stewart JR, Moeller JH, Earley L (1992) Electron beam arc therapy. In: Purdy JA (ed) Medical Physics Monograph 19, Advances in Radiation Oncology Physics: Dosimetry, Treatment Planning, and Brachytherapy. American Institute of Physics, Inc. Woodbury, NY, p. 430ffGoogle Scholar
  40. Levitt SH and Tapley N duV (1992) Technological basis of radiation therapy: practical clinical applications. Levitt SH, Khan FM, Potish RA (eds) 2nd edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  41. Low DA, Starkschall G, Bujnowski SW, Wang LL, Hogstrom KR (1992) Electron bolus design for radiotherapy treatment planning: Bolus design algorithms. Med Phys 19:115–124PubMedCrossRefGoogle Scholar
  42. Maor MH, Fields RS, Hogstrom KR, van Eys J (1985) Improving the therapeutic ratio of craniospinal irradiation in medulloblastoma. Int J Radiat Oncol Biol Phys 11(4):687–697PubMedGoogle Scholar
  43. Maor MH, Hogstrom KR, Fields RS, et al. (1986) Newer approaches to cerebrospinal irradiation in pediatric brain tumors. In: Brooks BF (ed) Malignant tumors of childhood. The University of Texas Press, Austin, pp 245–254Google Scholar
  44. McNeese MD (1989) Cancer Bulletin 41:88Google Scholar
  45. Meyer JA, Palta JR, Hogstrom KR (1984) Demonstration of relatively new electron dosimetry measurement techniques on the Mevatron 80. Med Phys 11:670–677PubMedCrossRefGoogle Scholar
  46. Nyerick CE, Ochran TG, Boyer AL, Hogstrom KR (1991) Dosimetry characteristics of metallic cones for intraoperative radiotherapy. Int J Radiat Oncol Biol Phys 21:501–510PubMedGoogle Scholar
  47. Palta JR, Biggs PJ. Hazle JD. Huq MS, Dahl RA. Ochran TG-. Soen J. Dobelbower RR Jr. McCullough EC (1995) Intraoperative electron beam radiation therapy: technique, dosimetry, and dose specification: report of task force 48 of the Radiation Therapy Committee, American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys 33:725–746PubMedCrossRefGoogle Scholar
  48. Perkins GH, McNeese MD, Antolak JA, Buchholz TA, Strom EA, Hogstrom KR (2001) A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation. Int J Radiat Oncol Biol Phys 51:1142–1151PubMedCrossRefGoogle Scholar
  49. Pohlit W, Manegold KH (1976) Electron-beam dose distribution in inhomogeneous media. In: Kramer S, Suntharalingam N, Zinnenger GF, (eds) High energy photons and electrons. John Wiley & Sons, New York, pp 243Google Scholar
  50. Purdy JA, Choi MC, Feldman A (1980) Lipowitz metal shielding thickness for dose reduction of 6-20 MeV electrons. Med Phys 7(3):251–253PubMedCrossRefGoogle Scholar
  51. Roback DM, Johnson JM, Khan FM, Engeler GP, McGuire WA (1997) The use of tertiary collimation for spinal irradiation with extended SSD electron fields. Int J Radiat Oncol Biol Phys 37(5):1187–1192PubMedCrossRefGoogle Scholar
  52. Rustgi SN (1986) Dose distribution under external eye shields for high energy electrons. Int J Radiat Oncol Biol Phys 12(1):141–144PubMedGoogle Scholar
  53. Sewchand W, Khan FM, Williamson J (1979) Total-body superficial electron-beam therapy using a multiple-field pendulum-arc technique. Radiology 130:493–498PubMedGoogle Scholar
  54. Shiu AS, Tung SS, Gastorf RJ, Hogstrom KR, Morrison WH, Peters LJ (1996) Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment. Int J Radiat Oncol Biol Phys 35:599–604PubMedCrossRefGoogle Scholar
  55. Strydom W, Parker W, Olivares M (2003) Electron beams: physical and clinical aspects. In: Podgorsak EB (ed) Review of radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, ViennaGoogle Scholar
  56. Tapley N duV (1976) Clinical applications of the electron beam. John Wiley & Sons, New YorkGoogle Scholar
  57. Tung SS, Shiu AS, Starkschall G, Morrison WH, Hogstrom KR (1993) Dosimetric evaluation of total scalp irradiation using a lateral electron-photon technique. Int J Radiat Oncol Biol Phys 27:153–160PubMedGoogle Scholar
  58. Wang CC (1989) Radiotherapeutic management and results of T1N0, T2N0 carcinoma of the oral tongue: evaluation of boost techniques. Int J Radiat Oncol Biol Phys 17:287–291PubMedGoogle Scholar
  59. Wang CC (1991) Intraoral cone for carcinoma of the oral cavity. In: Vaeth JM, Meyer JL (eds) Frontiers of radiation therapy and oncology, vol. 25: the role of high energy electrons in the treatment of cancer. Karger AG, Basel. pp 128–131Google Scholar
  60. Weaver RD, Gerbi BJ, Dusenbery KE (1995) Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters. Int J Radiat Oncol Biol Phys 33:475–478PubMedCrossRefGoogle Scholar
  61. Weaver RD, Gerbi BJ, Dusenbery KE (1998) Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams. Int J Radiat Oncol Biol Phys 41:233–237PubMedCrossRefGoogle Scholar
  62. Wooden KK, Hogstrom KR, Blum P, Gastorf RJ, Cox JD (1996) Whole-limb irradiation of the lower calf using a six-field electron technique. Med Dosim 21:211–218PubMedCrossRefGoogle Scholar
  63. Ysebaert L, Truc G, Dalac S, Lambert D, Petrella T, Barillot I, Naudy S, Horiot JC, Maingon P (2004) Ultimate results of radiation therapy for T1-T2 mycosis fungoides (including reirradiation). Int J Radiat Oncol Biol Phys 58:1128–1134PubMedCrossRefGoogle Scholar
  64. Zhu TC, Das IJ, Bjärngard BE (2001) Characteristics of bremsstrahlung in electron beams. Med Phys 8:352Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bruce J. Gerbi
    • 1
  1. 1.Therapeutic Radiology — Radiation OncologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations