Advertisement

Physics and Clinical Aspects of Brachytherapy

  • Zuofeng Li
Part of the Medical Radiology book series (MEDRAD)

Keywords

Dose Distribution Radiat Oncol Biol Phys Clinical Target Volume High Dose Rate Accelerate Partial Breast Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antipas V, Dale RG, Coles IP (2001) A theoretical investigation into the role of tumour radiosensitivity, clonogen repopulation, tumour shrinkage and radionuclide RBE in permanent brachytherapy implants of 125I and 103Pd. Phys Med Biol 46:2557–2569PubMedCrossRefGoogle Scholar
  2. Brenner DJ, Hall EJ (1991) Fractionated high dose rate versus low dose rate regimens for intracavitary brachytherapy of the cervix. I. General considerations based on radiobiology. Br J Radiol 64:133–141PubMedCrossRefGoogle Scholar
  3. Brenner DJ, Hall EJ, Randers-Pehrson G, Huang Y, Johnson GW, Miller RW, Wu B, Vazquez ME, Medvedovsky C, Worgul BV (1996) Quantitative comparisons of continuous and pulsed low dose rate regimens in a model late-effect system. Int J Radiat Oncol Biol Phys 34:905–910PubMedCrossRefGoogle Scholar
  4. Brenner DJ, Schiff PB, Huang Y, Hall EJ (1997) Pulsed-doserate brachytherapy: design of convenient (daytime-only) schedules. Int J Radiat Oncol Biol Phys 39:809–815PubMedCrossRefGoogle Scholar
  5. Brinkmann DH, Kline RW (1998) Automated seed localization from CT datasets of the prostate. Med Phys 25:1667–1672PubMedCrossRefGoogle Scholar
  6. Chen CZ, Huang Y, Hall EJ, Brenner DJ (1997) Pulsed brachytherapy as a substitute for continuous low dose rate: an in vitro study with human carcinoma cells. Int J Radiat Oncol Biol Phys 37:137–143PubMedCrossRefGoogle Scholar
  7. Chen Y, Boyer AL, Xing L (2000) A dose-volume histogram based optimization algorithm for ultrasound guided prostate implants. Med Phys 27:2286–2292PubMedCrossRefGoogle Scholar
  8. Chibani O, Williamson JF, Todor D (2005) Dosimetric effects of seed anisotropy and interseed attenuation for 103Pd and 125I prostate implants. Med Phys 32:2557–2566PubMedCrossRefGoogle Scholar
  9. Cohen GN, Amols HI, Zelefsky MJ, Zaider M (2002) The Anderson nomograms for permanent interstitial prostate implants: a briefing for practitioners. Int J Radiat Oncol Biol Phys 53:504–511PubMedCrossRefGoogle Scholar
  10. Crusinberry RA, Kramolowsky EV, Loening SA (1985) Percutaneous transperineal placement of gold 198 seeds for treatment of carcinoma of the prostate. Prostate 11:59–67Google Scholar
  11. Das RK, Mishra V, Perera H, Meigooni AS, Williamson JF (1995) A secondary air kerma strength standard for Yb-169 interstitial brachytherapy sources. Phys Med Biol 40:741–756PubMedCrossRefGoogle Scholar
  12. Das RK, Patel R, Shah H, Odau H, Kuske RR (2004) 3D CT-based high-dose-rate breast brachytherapy implants: treatment planning and quality assurance. Int J Radiat Oncol Biol Phys 59:1224–1228PubMedCrossRefGoogle Scholar
  13. Dawson JE, Wu T, Roy T, Gu JY, Kim H (1994) Dose effects of seeds placement deviations from pre-planned positions in ultrasound guided prostate implants. Radiother Oncol 32:268–270PubMedCrossRefGoogle Scholar
  14. DeMarco JJ, Smathers JB, Burnison CM, Ncube QK, Solberg TD (1999) CT-based dosimetry calculations for 125I prostate implants. Int J Radiat Oncol Biol Phys 45:1347–1353PubMedCrossRefGoogle Scholar
  15. D’Souza WD, Meyer RR, Thomadsen BR, Ferris MC (2001) An iterative sequential mixed-integer approach to automated prostate brachytherapy treatment plan optimization. Phys Med Biol 46:297–322PubMedCrossRefGoogle Scholar
  16. Edmundson GK (1994) Geometry-based optimization: an American viewpoint. In: Mould RJ, Batterman J (eds) Brachytherapy: from radium to optimization. Nucletron, Columbia, Maryland, pp 314–318Google Scholar
  17. Edmundson GK, Yan D, Martinez AA (1995) Intraoperative optimization of needle placement and dwell times for conformal prostate brachytherapy. Int J Radiat Oncol Biol Phys 33:1257–1263PubMedCrossRefGoogle Scholar
  18. Feygelman V, Friedland JL, Sanders RM, Noriega BK, Pow-Sang JM (1996) Improvement in dosimetry of ultrasoundguided prostate implants with the use of multiple stabilization needles. Med Dosim 21:109–112PubMedCrossRefGoogle Scholar
  19. Gallagher RJ, Lee EK (1997) Mixed integer programming optimization models for brachytherapy treatment planning. Proc AMIA Annu Fall Symp, pp 278–282Google Scholar
  20. Hilaris BS, Nori D, Anderson LL (eds) (1988) An atlas of brachytherapy. Macmillan, New YorkGoogle Scholar
  21. Hochstetler JA, Kreder KJ, Brown CK, Loening SA (1995) Survival of patients with localized prostate cancer treated with percutaneous transperineal placement of radioactive gold seeds: stages A2, B, and C. Prostate 26:316–324PubMedGoogle Scholar
  22. Holm HH (1997) The history of interstitial brachytherapy of prostatic cancer. Semin Surg Oncol 13:431–437PubMedCrossRefGoogle Scholar
  23. International Commission on Radiation Units and Measurements (ICRU) (1985) Report 38: Dose and volume specification for reporting intracavitary therapy in ynecology.Google Scholar
  24. International Commission on Radiation Units and Measurements (ICRU) (1993) Report 50: Prescribing, recording, and reporting photon beam therapyGoogle Scholar
  25. International Commission on Radiation Units and Measurements (ICRU) (1998) Report 58: Dose and volume specification for reporting interstitial therapyGoogle Scholar
  26. Karaiskos P, Angelopoulos A, Baras P, Rozaki-Mavrouli H, Sandilos P, Vlachos L, Sakelliou L (2000) Dose rate calculations around 192Ir brachytherapy sources using a Sievert integration model. Phys Med Biol 45:383–398PubMedCrossRefGoogle Scholar
  27. Keisch M (2005) MammoSite. Expert Rev Med Devices 2:387–389PubMedCrossRefGoogle Scholar
  28. Kini VR, Edmundson GK, Vicini FA, Jaffray DA, Gustafson G, Martinez AA (1999) Use of three-dimensional radiation therapy planning tools and intraoperative ultrasound to evaluate high dose rate prostate brachytherapy implants. Int J Radiat Oncol Biol Phys 43:571–578PubMedCrossRefGoogle Scholar
  29. Kuske R, Bolton J, Wilenzick R et al. (1994) Brachytherapy as the sole method of breast irradiation in Tis, T1, T2, N0,1 breast cancer [Abstract]. Int J Radiat Oncol Biol Phys 30(Suppl):245Google Scholar
  30. Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, Palta JR, Purdy JA, Reinstein LE, Svensson GK et al. (1994) Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys 21:581–618PubMedCrossRefGoogle Scholar
  31. Lahanas M, Baltas D, Giannouli S (2003) Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy. Phys Med Biol 48:599–617PubMedCrossRefGoogle Scholar
  32. Lee EK, Zaider M (2003) Intraoperative dynamic dose optimization in permanent prostate implants. Int J Radiat Oncol Biol Phys 56:854–861PubMedCrossRefGoogle Scholar
  33. Lessard E, Pouliot J (2001) Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys 28:773–779PubMedCrossRefGoogle Scholar
  34. Li Z (2005) QA review of brachytherapy treatment plans. In: Thomadsen BR, Rivard MJ, Butler WM (eds) Brachytherapy physics, 2nd edn. Medical Physics Publishing, Madison, WisconsinGoogle Scholar
  35. Li Z, Nalcacioglu IA, Ranka S, Sahni SK, Palta JR, Tome W, Kim S (2001) An algorithm for automatic, computed-tomography-based source localization after prostate implant. Med Phys 28:1410–1415PubMedCrossRefGoogle Scholar
  36. Lin LL, Mutic S, Malyapa RS, Low DA, Miller TR, Vicic M, Laforest R, Zoberi I, Grigsby PW (2005) Sequential FDGPET brachytherapy treatment planning in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 63:1494–1501PubMedCrossRefGoogle Scholar
  37. Ling CC (1992) Permanent implants using Au-198, Pd-103 and I-125: radiobiological considerations based on the linear quadratic model. Int J Radiat Oncol Biol Phys 23:81–87PubMedGoogle Scholar
  38. Ling CC, Li WX, Anderson LL (1995) The relative biological effectiveness of I-125 and Pd-103. Int J Radiat Oncol Biol Phys 32:373–378PubMedCrossRefGoogle Scholar
  39. Lindsay P, Battista J, Van Dyk J (2001) The effect of seed anisotrophy on brachytherapy dose distributions using 125I and 103Pd. Med Phys 28:336–345PubMedCrossRefGoogle Scholar
  40. Liu H, Cheng G, Yu Y, Brasacchio R, Rubens D, Strang J, Liao L, Messing E (2003) Automatic localization of implanted seeds from post-implant CT images. Phys Med Biol 48:1191–1203PubMedCrossRefGoogle Scholar
  41. Martel MK, Narayana V (1998) Brachytherapy for the next century: use of image-based treatment planning. Radiat Res 150(5 Suppl):S178–S188PubMedGoogle Scholar
  42. Mason DL, Battista JJ, Barnett RB, Porter AT (1992) Ytterbium-169: calculated physical properties of a new radiation source for brachytherapy. Med Phys 19:695–703PubMedCrossRefGoogle Scholar
  43. Matzkin H, Kaver I, Bramante-Schreiber L, Agai R, Merimsky O, Inbar M (2003) Comparison between two iodine-125 brachytherapy implant techniques: pre-planning and intra-operative by various dosimetry quality indicators. Radiother Oncol 68:289–294PubMedCrossRefGoogle Scholar
  44. Meigooni AS, Meli JA, Nath R (1992) Interseed effects on dose for 125I brachytherapy implants. Med Phys 19:385–390PubMedCrossRefGoogle Scholar
  45. Milickovic N, Lahanas M, Papagiannopoulo M, Zamboglou N, Baltas D (2002) Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys Med Biol 47:2263–2280PubMedCrossRefGoogle Scholar
  46. Murphy MK, Piper RK, Greenwood LR, Mitch MG, Lamperti PJ, Seltzer SM, Bales MJ, Phillips MH (2004) Evaluation of the new cesium-131 seed for use in low-energy X-ray brachytherapy. Med Phys 31:1529–1538PubMedCrossRefGoogle Scholar
  47. Mutic S, Grigsby PW, Low DA, Dempsey JF, Harms WB, Laforest R, Bosch WR, Miller TR (2002) PET-guided three-dimensional treatment planning of intracavitary gynecologic implants. Int J Radiat Oncol Biol Phys 52:1104–1110PubMedCrossRefGoogle Scholar
  48. Nag S, Beyer D, Friedland J, Grimm P, Nath R (1999) American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys 44:789–799PubMedCrossRefGoogle Scholar
  49. Nag S, Bice W, DeWyngaert K, Prestidge B, Stock R, Yu Y (2000) The American Brachytherapy Society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis. Int J Radiat Oncol Biol Phys 46:221–230PubMedCrossRefGoogle Scholar
  50. Nag S, Ciezki JP, Cormack R, Doggett S, DeWyngaert K, Edmundson GK, Stock RG, Stone NN, Yu Y, Zelefsky MJ (2001) Intraoperative planning and evaluation of permanent prostate brachytherapy: report of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys 51:1422–1430PubMedCrossRefGoogle Scholar
  51. Nag S, Cardenes H, Chang S, Das IJ, Erickson B, Ibbott GS, Lowenstein J, Roll J, Thomadsen B, Varia M (2004) Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys 60:1160–1172PubMedCrossRefGoogle Scholar
  52. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group no. 43. American Association of Physicists in Medicine. Med Phys 22:209–234PubMedCrossRefGoogle Scholar
  53. Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group no. 56. American Association of Physicists in Medicine. Med Phys 24:1557–1598PubMedCrossRefGoogle Scholar
  54. Nath S, Chen Z, Yue N, Trumpore S, Peschel R (2000) Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds. Med Phys 27:1058–1066PubMedCrossRefGoogle Scholar
  55. Nath R, Bongiorni P, Chen Z, Gragnano J, Rockwell S (2005) Relative biological effectiveness of 103Pd and 125I photons for continuous low-dose-rate irradiation of Chinese hamster cells. Radiat Res 163:501–509PubMedCrossRefGoogle Scholar
  56. National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39/Radiation Therapy Oncology Group (RTOG) 0413 (2005) A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I, or II breast cancer, web page http://atc.wustl.edu/protocols/nsabp/b-39/0413.html, last accessed 2 December 2005Google Scholar
  57. Orton CG (2001) High-dose-rate brachytherapy may be radiobiologically superior to low-dose rate due to slow repair of late-responding normal tissue cells. Int J Radiat Oncol Biol Phys 49:183–189PubMedCrossRefGoogle Scholar
  58. Patel NS, Chiu-Tsao ST, Ho Y, Duckworth T, Shih JA, Tsao HS, Quon H, Harrison LB (2002) High beta and electron dose from 192Ir: implications for gamma intravascular brachytherapy. Int J Radiat Oncol Biol Phys 54:972–980PubMedCrossRefGoogle Scholar
  59. Perera H, Williamson JF, Li Z, Mishra V, Meigooni AS (1994) Dosimetric characteristics, air-kerma-strength calibration and verification of Monte Carlo simulation for a new Ytter bium-169 brachytherapy source. Int J Radiat Oncol Biol Phys 28:953–970PubMedGoogle Scholar
  60. Potters L, Calguaru E, Thornton KB, Jackson T, Huang D (2003) Toward a dynamic real-time intraoperative permanent prostate brachytherapy methodology. Brachytherapy 2:172–180PubMedCrossRefGoogle Scholar
  61. Pouliot J, Tremblay D, Roy J, Filice S (1996) Optimization of permanent 125I prostate implants using fast simulated annealing. Int J Radiat Oncol Biol Phys 36:711–712PubMedCrossRefGoogle Scholar
  62. Raben A, Chen H, Grebler A, Geltzeiler J, Geltzeiler M, Keselman I, Litvin S, Sim S, Hanlon A, Yang J (2004) Prostate seed implantation using 3D-computer assisted intraoperative planning vs a standard look-up nomogram: improved target conformality with reduction in urethral and rectal wall dose. Int J Radiat Oncol Biol Phys 60:1631–1638PubMedCrossRefGoogle Scholar
  63. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM Task Group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633–674PubMedCrossRefGoogle Scholar
  64. Sumida I, Shiomi H, Oh RJ, Tanaka E, Isohashi H, Inoue T, Inoue T (2004) An optimization algorithm of dose distribution using attraction-repulsion model (application to low-dose-rate interstitial brachytherapy). Int J Radiat Oncol Biol Phys 59:1217–1223PubMedCrossRefGoogle Scholar
  65. Taschereau R, Pouliot J, Roy J, Tremblay D (2000) Seed misplacement and stabilizing needles in transperineal permanent prostate implants. Radiother Oncol 55:59–63PubMedCrossRefGoogle Scholar
  66. Tubic D, Beaulieu L (2005) Sliding slice: a novel approach for high accuracy and automatic 3D localization of seeds from CT scans. Med Phys 32:163–174PubMedCrossRefGoogle Scholar
  67. Tubic D, Zaccarin A, Pouliot J, Beaulieu L (2001) Automated seed detection and three-dimensional reconstruction. I. Seed localization from fluoroscopic images or radiographs Med Phys 28:2265–2267PubMedCrossRefGoogle Scholar
  68. Van der Laarse R (1994) The stepping source dosimetry system as an extension of the Paris system. In: Mould RJ, Batterman J (eds) Brachytherapy: from radium to optimization. Nucletron, Columbia, Maryland, pp 352–372Google Scholar
  69. Vicini FA, Arthur DW (2005) Breast brachytherapy: North American experience. Semin Radiat Oncol 15:108–115PubMedCrossRefGoogle Scholar
  70. Vicini FA, Remouchamps V, Wallace M, Sharpe M, Fayad J, Tyburski L, Letts N, Kestin L, Edmundson G, Pettinga J, Goldstein NS, Wong J (2003) Ongoing clinical experience utilizing 3D conformal external beam radiotherapy to deliver partial-breast irradiation in patients with earlystage breast cancer treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys 57:1247–1253PubMedCrossRefGoogle Scholar
  71. Visser AG, van den Aardweg GJ, Levendag PC (1996) Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments. Int J Radiat Oncol Biol Phys 34:497–505PubMedCrossRefGoogle Scholar
  72. Wahab SH, Malyapa RS, Mutic S, Grigsby PW, Deasy JO, Miller TR, Zoberi I, Low DA (2004) A treatment planning study comparing HDR and AGIMRT for cervical cancer Med Phys 31:734–743PubMedCrossRefGoogle Scholar
  73. Weeks KJ, Montana GS (1997) Three-dimensional applicator system for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 37455–463PubMedCrossRefGoogle Scholar
  74. Williamson JF (1996) The Sievert integral revisited: evaluation and extension to 125I, 169Yb, and 192Ir brachytherapy sources. Int J Radiat Oncol Biol Phys 36:1239–1250PubMedCrossRefGoogle Scholar
  75. Williamsom JF (1998a) Monte Carlo-based dose-rate tables for the Amersham CDCS. J and 3M model 6500 137Cs tubes. Int J Radiat Oncol Biol Phys 41:959–970CrossRefGoogle Scholar
  76. Williamson JF (1998b) Clinical brachytherapy physics. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 405–467Google Scholar
  77. Williamson JF, Morin RL, Khan FM (1983) Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry. Phys Med Biol 28:1021–1032PubMedCrossRefGoogle Scholar
  78. Wuu CS, Zaider M (1998) A calculation of the relative biological effectiveness of 125I and 103Pd brachytherapy sources using the concept of proximity function. Med Phys 25:2186–2189PubMedCrossRefGoogle Scholar
  79. Wuu CS, Kliauga P, Zaider M, Amols HI (1996) Microdosimetric evaluation of relative biological effectiveness for 103Pd, 125I, 241Am, and 192Ir brachytherapy sources. Int J Radiat Oncol Biol Phys 36:689–697PubMedCrossRefGoogle Scholar
  80. Yang G, Reinstein LE, Pai S, Xu Z, Carroll DL (1998) A new genetic algorithm technique in optimization of permanent 125I prostate implants. Med Phys 25:2308–2315PubMedCrossRefGoogle Scholar
  81. Yu Y, Schell MC (1996) A genetic algorithm for the optimization of prostate implants. Med Phys 23:2085–2091PubMedCrossRefGoogle Scholar
  82. Yu Y, Anderson LL, Li Z, Mellenberg DE, Nath R, Schell MC, Waterman FM, Wu A, Blasko JC (1999) Permanent prostate seed implant brachytherapy: report of the American Association of Physicists in Medicine Task Group no. 64. Med Phys 26:2054–2076PubMedCrossRefGoogle Scholar
  83. Yue N, Heron DE, Komanduri K, Huq MS (2005) Prescription dose in permanent 131Cs seed prostate implants. Med Phys 32:2496–2502PubMedCrossRefGoogle Scholar
  84. Zhang H, Baker C, McKinsey R, Meigooni A (2005) Dose verification with Monte Carlo technique for prostate brachytherapy implants with (125)I sources. Med Dosim 30:85–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zuofeng Li
    • 1
  1. 1.Department of Radiation OncologyWashington UniversitySt. LouisUSA

Personalised recommendations