Stereotactic Radiosurgery and Radiotherapy

  • Joseph R. Simpson
  • Robert E. Drzymala
  • Keith M. Rich
Part of the Medical Radiology book series (MEDRAD)

11.9 Conclusion

Stereotactic radiosurgery and radiotherapy are two valuable and increasingly applied techniques combining sophisticated brain or body imaging with stereotactic guidance and computer treatment planning for precise radiation treatment programs given either as a single large, small number of moderately large, or multiple conventional size doses with maximal sparing of adjacent normal tissues. Several devices and treatment schedules have been tested and reported on in the literature, substantiating the validity of these approaches. They have substantially increased our knowledge of tumor response and normal tissue tolerance in a very quantitative sense, and have provided useful alternative and complimentary treatments for a number of conditions. Further progress is eagerly anticipated in combining these techniques with other targeted therapies to enhance our increasingly sophisticated anti-cancer armamentarium.


Radiat Oncol Biol Phys Gamma Knife Stereotactic Radiosurgery Stereotactic Radiotherapy Radiochromic Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoyama H, Shirato H, Onimaru R et al. (2003) Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int J Radiat Oncol Biol Phys 56:793–800PubMedCrossRefGoogle Scholar
  2. Ashamalla H, Addeo D, Ikoro NC et al. (2003) Commissioning and clinical results utilizing the Gildenbergy-Laitinen adapter device for X-ray in fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 56:592–598PubMedCrossRefGoogle Scholar
  3. Benedict SH, Cardinale RM, Wu Q et al. (2001) Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys 50:751–758PubMedCrossRefGoogle Scholar
  4. Bova FJ, Meeks SL, Friedman WA et al. (1998) Optic-guided stereotactic radiotherapy. Med Dosim 23:221–228PubMedCrossRefGoogle Scholar
  5. Chang SD, Adler JR (2001) Robotics and radiosurgery: the CyberKnife. Stereotact Funct Neurosurg 76:204–208PubMedCrossRefGoogle Scholar
  6. Chang SD, Murphy M, Geis P et al. (1998) Clinical experience with image-guided robotic radiosurgery (the CyberKnife) in the treatment of brain and spinal cord tumors. Neurol Med Chir (Tokyo) 38:780–783CrossRefGoogle Scholar
  7. Cheung PC, Sixel KE, Tirona R et al. (2003) Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC). Int J Radiat Oncol Biol Phys 57:1437–1442PubMedCrossRefGoogle Scholar
  8. Cosgrove VP, Jahn U, Pfaender M et al. (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336PubMedCrossRefGoogle Scholar
  9. Das IJ, Downes MB, Corn BW et al. (1996) Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit. Radiother Oncol 38:61–68PubMedCrossRefGoogle Scholar
  10. Delannes M, Daly N, Bonnet J et al. (1990) Laitinen’s stereoadapter: application to the fractionated cerebral irradiation under stereotaxic conditions. Neurochirurgie 36:167–175PubMedGoogle Scholar
  11. Denissova SI, Yewondwossen MH, Andrew JW et al. (2005) A gated deep inspiration breath-hold radiation therapy technique using a linear position transducer. J Appl Clin Med Phys 6:61–70PubMedCrossRefGoogle Scholar
  12. Dieckmann K, George D, Zehetmayer M et al. (2003) LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience. Radiother Oncol 67:199–206PubMedCrossRefGoogle Scholar
  13. Drzymala RE, Mutic S (1999) Stereotactic imaging quality assurance using an anthropomorphic phantom. Comput Aided Surg 4:248–255PubMedCrossRefGoogle Scholar
  14. Drzymala RE, Klein EE, Simpson JR et al. (1994) Assurance of high quality linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 30:459–472PubMedGoogle Scholar
  15. Duggan DM, Coffey CW (1996) Use of a micro-ionization chamber and an anthropomorphic head phantom in a quality assurance program for stereotactic radiosurgery. Med Phys 23:513–516PubMedCrossRefGoogle Scholar
  16. Dunbar SF, Tarbell NJ, Kooy HM (1994) Stereotactic radiotherapy for pediatric and adult brain tumors: preliminary report. Int J Radiat Oncol Biol Phys 30:531–539PubMedGoogle Scholar
  17. Emara K, Weisbrod DJ, Sahgal A et al. (2004) Stereotactic radiotherapy in the treatment of juxtapapillary choroidal melanoma: preliminary results. Int J Radiat Oncol Biol Phys 59:94–100PubMedCrossRefGoogle Scholar
  18. Ertl A, Hartl RF, Zehetmayer M et al. (1996) TLD array for precise dose measurements in stereotactic radiation techniques. Phys Med Biol 41:2679–2686PubMedCrossRefGoogle Scholar
  19. Ertl A, Berg A, Zehetmayer M et al. (2000) High-resolution dose profile studies based on MR imaging with polymer BANG (TM) gels in stereotactic radiation techniques. Magn Reson Imaging 18:343–349PubMedCrossRefGoogle Scholar
  20. Fidanzio A, Azario L, Miceli R et al. (2000) PTW-diamond detector: dose rate and particle type dependence. Med Phys 27:2589–2593PubMedCrossRefGoogle Scholar
  21. Foroni R, Gambraini G, Danesi U et al. (2000) New dosimetric approach for multidimensional dose evaluation in gamma knife radiosurgery. Technical note. J Neurosurg 93:239–242PubMedGoogle Scholar
  22. Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32:334–342PubMedCrossRefGoogle Scholar
  23. Gerszten PC, Ozhasoglu C, Burton SA et al. (2002) Feasibility of frameless single-fraction stereotactic radiosurgery for spinal lesions. Neurosurg Focus 13:e2PubMedGoogle Scholar
  24. Gerszten PC, Welch WC (2004) CyberKnife radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 15:491–501PubMedCrossRefGoogle Scholar
  25. Grebe G (2001) Dynamic arc radiosurgery and radiotherapy: commissioning and verification of dose distributions. Int J Radiat Oncol Biol Phys 49:1451–1460PubMedCrossRefGoogle Scholar
  26. Grosu A-L et al. (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11Cmethionine-PET data for stereotactic radiotherapy using a linac: first clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463PubMedCrossRefGoogle Scholar
  27. Hamm KD (2004) Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging. J Neurosurg 101:326–333PubMedGoogle Scholar
  28. Herfarth KK, Debus J, Lohr F et al. (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335PubMedCrossRefGoogle Scholar
  29. Ishihara H, Saito K, Nishizaki T et al. (2004) CyberKnife radiosurgery for vestibular schwannoma. Minim Invasive Neurosurg 47:290–293PubMedCrossRefGoogle Scholar
  30. Kai J, Shiomi H, Sasama T et al. (1998) Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. Comput Aided Surg 3:257–263PubMedCrossRefGoogle Scholar
  31. Kassaee A, Das IJ, Tochner Z et al. (2003) Modification of Gill-Thomas-Cosman frame for extracranial head-and-neck stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57:1192–1195PubMedCrossRefGoogle Scholar
  32. Kellermann PO, Ertl A, Gornik E (1998) A new method of readout in radiochromic film dosimetry. Phys Med Biol 43:2251–2263PubMedCrossRefGoogle Scholar
  33. Kim KH, Cho M-J, Kim J-S et al. (2003) Isocenter accuracy in frameless stereotactic radiotherapy using implanted fiducials. Int J Radiat Oncol Biol Phys 56:266–273PubMedCrossRefGoogle Scholar
  34. Kooy HM, Dunbar SF, Tarbell NJ (1994) Adaptation and verification of the relocatable Gill-Thomas-Cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 30:685–691PubMedGoogle Scholar
  35. Kuo JS, Yu C, Petrovich Z et al. (2003) The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 53:1235–1239PubMedCrossRefGoogle Scholar
  36. Lefkopoulos D, Foulquier JN, Petegnief Y et al. (2001) Physical and methodological aspects of multimodality imaging and principles of treatment planning in 3D conformal radiotherapy. Cancer Radiother 5:496–514PubMedGoogle Scholar
  37. Leksell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316–319PubMedGoogle Scholar
  38. Leksell L (1968) Cerebral radiosurgery: I. Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595PubMedGoogle Scholar
  39. Leksell L (1983) Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 46:797–803PubMedCrossRefGoogle Scholar
  40. Levy RP, Schulte RW, Slater JD et al. (1999) Stereotactic radiosurgery: the role of charged particles. Acta Oncol 38:165–169PubMedCrossRefGoogle Scholar
  41. Li S, Rashid A, He S et al. (2004) An new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multileaf collimators using a small detector. Med Phys 31:2020w2032Google Scholar
  42. Lindvall P, Bergstrom P, Lofroth P-O et al. (2003) Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery 53:1036–1043PubMedCrossRefGoogle Scholar
  43. Lindvall P, Bergstrom P, Lofroth P-O et al. (2005) Hypofractionated conformal stereotactic radiotherapy alone or in combination with whole-brain radiotherapy in patients with cerebral metastases. Int J Radiat Oncol Biol Phys 61:1460–1466PubMedCrossRefGoogle Scholar
  44. Lohr F, Debus J, Frank C et al. (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527PubMedCrossRefGoogle Scholar
  45. Low DA, Li Z, Drzymala RE (1995) Minimization of target positioning error in accelerator-based radiosurgery. Med Phys 22:443–448PubMedCrossRefGoogle Scholar
  46. Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381PubMedGoogle Scholar
  47. Mack A, Mack G, Weltz D et al. (2003) High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields. Med Phys 30:2399–2409PubMedCrossRefGoogle Scholar
  48. Madsen BL, Hsi RA, Pham HT et al. (2003) Intrafractional stability of the prostate using a stereotactic radiotherapy technique. Int J Radiat Oncol Biol Phys 57:1285–1291PubMedCrossRefGoogle Scholar
  49. McKerracher C, Thwaites DW (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44:2143–2160PubMedCrossRefGoogle Scholar
  50. Monk JE, Perks JR, Doughty D et al. (2003) Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57:1443–1449PubMedCrossRefGoogle Scholar
  51. Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14:91–100PubMedCrossRefGoogle Scholar
  52. Neumann M (2002) DICOM-current status and future developments for radiotherapy. Z Med Phys 12:171–176PubMedGoogle Scholar
  53. Oldham M, Siewerdsen JH, Shetty A et al. (2001) High resolution gel-dosimetry by optical-CT and MR scanning. Med Phys 28:1436–1445PubMedCrossRefGoogle Scholar
  54. Onishi H, Kuriyama K, Komiyama T et al. (2004) Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer 45:45–55PubMedCrossRefGoogle Scholar
  55. Pan T (2005) Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys 32:627–634PubMedCrossRefGoogle Scholar
  56. Podgorsak EB, Olivier A, Pla M et al. (1988) Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14:115–126PubMedGoogle Scholar
  57. Ramani R, Lightstone AW, Mason DL et al. (1994) The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery. Med Phys 21:389–392PubMedCrossRefGoogle Scholar
  58. Remouchamps VM, Letts, Yan D et al. (2003) Three-dimensional evaluation of intra-and interfraction immobilization of lung and chest wall using active breathing control. A reproducibility study with breast cancer patients. Int J Radiat Oncol Biol Phys 57:968–978PubMedCrossRefGoogle Scholar
  59. Robar JL, Clark BG (1999) The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry. Med Phys 26:2144–2150PubMedCrossRefGoogle Scholar
  60. Rock JP, Ryu S, Yin FF et al. (2004) The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J Neurooncol 69:319–334PubMedCrossRefGoogle Scholar
  61. Scheib SG, Gianolini S (2002) Three-dimensional dose verification using BANG gel: a clinical example. J Neurosurg 97:582–587PubMedGoogle Scholar
  62. Schell MC, Bova FJ, Larson DA et al. (1995) AAPM report no. 42, Stereotactic radiosurgery, Report of Task Group 42, Radiation Therapy Committee. American Institute of Physics, New YorkGoogle Scholar
  63. Selch MT, Ahn E, Laskari A et al. (2004) Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 59:101–111PubMedCrossRefGoogle Scholar
  64. Shaw E, Scott C, Souhami L et al. (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of Radiation Therapy Oncology Group Protocol 90-05. Int J Radiat Oncol Biol Phys 34:647–654PubMedCrossRefGoogle Scholar
  65. Solberg TD (2001) Dynamic arc radiosurgery field shaping: a comparison with static field conformal and on-coplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1451–1460CrossRefGoogle Scholar
  66. Somigliana A, Cattaneo GM, Fiorino C et al. (1999) Dosim etry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors. Phys Med Biol 44:887–897PubMedCrossRefGoogle Scholar
  67. Uematsu M, Shioda A, Suda A et al. (2001) Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small-cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 51:666–670PubMedCrossRefGoogle Scholar
  68. Verellen D, Soete G (2003) Quality assurance of a system for improved target localization and patient set-up that combined real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol 67:129–141PubMedCrossRefGoogle Scholar
  69. Walton L, Hampshire A, Roper A et al. (2000) Development of a relocatable frame technique for gamma knife radiosurgery. Technical note. J Neurosurg 93:198–202PubMedGoogle Scholar
  70. Warrington AP, Laing RW, Brada M (1994) Quality assurance in fractionated stereotactic radiotherapy. Radiother Oncol 30:239–246PubMedCrossRefGoogle Scholar
  71. Williams JA (2002) Fractionated stereotactic radiotherapy for acoustic neuromas. Acta Neurochir 144:1249–1254CrossRefGoogle Scholar
  72. Williams JA (2003) Fractionated stereotactic radiotherapy for acoustic neuromas: preservation of function versus size. J Clin Neurosci 10:48–52PubMedCrossRefGoogle Scholar
  73. Yamamoto M (1999) Gamma Knife radiosurgery: technology, applications and future directions. Neurosurg Clin N Am 10:181–202PubMedGoogle Scholar
  74. Yan H (2003) A phantom study on the positioning accuracy of the Novalis system. Med Phys 30:3052–3060PubMedCrossRefGoogle Scholar
  75. Yin FF, Zhu J, Yan H et al. (2002) Dosimetric characteristics of Novalis shaped beam surgery unit. Med Phys 29:1729–1738PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joseph R. Simpson
    • 1
  • Robert E. Drzymala
    • 2
  • Keith M. Rich
    • 3
  1. 1.Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
  3. 3.Neurological Surgery, Department of Neurological SurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations