Skip to main content

Stereotactic Radiosurgery and Radiotherapy

  • Chapter
Book cover Technical Basis of Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

11.9 Conclusion

Stereotactic radiosurgery and radiotherapy are two valuable and increasingly applied techniques combining sophisticated brain or body imaging with stereotactic guidance and computer treatment planning for precise radiation treatment programs given either as a single large, small number of moderately large, or multiple conventional size doses with maximal sparing of adjacent normal tissues. Several devices and treatment schedules have been tested and reported on in the literature, substantiating the validity of these approaches. They have substantially increased our knowledge of tumor response and normal tissue tolerance in a very quantitative sense, and have provided useful alternative and complimentary treatments for a number of conditions. Further progress is eagerly anticipated in combining these techniques with other targeted therapies to enhance our increasingly sophisticated anti-cancer armamentarium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyama H, Shirato H, Onimaru R et al. (2003) Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int J Radiat Oncol Biol Phys 56:793–800

    Article  PubMed  Google Scholar 

  • Ashamalla H, Addeo D, Ikoro NC et al. (2003) Commissioning and clinical results utilizing the Gildenbergy-Laitinen adapter device for X-ray in fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 56:592–598

    Article  PubMed  CAS  Google Scholar 

  • Benedict SH, Cardinale RM, Wu Q et al. (2001) Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys 50:751–758

    Article  PubMed  CAS  Google Scholar 

  • Bova FJ, Meeks SL, Friedman WA et al. (1998) Optic-guided stereotactic radiotherapy. Med Dosim 23:221–228

    Article  PubMed  CAS  Google Scholar 

  • Chang SD, Adler JR (2001) Robotics and radiosurgery: the CyberKnife. Stereotact Funct Neurosurg 76:204–208

    Article  PubMed  CAS  Google Scholar 

  • Chang SD, Murphy M, Geis P et al. (1998) Clinical experience with image-guided robotic radiosurgery (the CyberKnife) in the treatment of brain and spinal cord tumors. Neurol Med Chir (Tokyo) 38:780–783

    Article  CAS  Google Scholar 

  • Cheung PC, Sixel KE, Tirona R et al. (2003) Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC). Int J Radiat Oncol Biol Phys 57:1437–1442

    Article  PubMed  Google Scholar 

  • Cosgrove VP, Jahn U, Pfaender M et al. (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336

    Article  PubMed  CAS  Google Scholar 

  • Das IJ, Downes MB, Corn BW et al. (1996) Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit. Radiother Oncol 38:61–68

    Article  PubMed  CAS  Google Scholar 

  • Delannes M, Daly N, Bonnet J et al. (1990) Laitinen’s stereoadapter: application to the fractionated cerebral irradiation under stereotaxic conditions. Neurochirurgie 36:167–175

    PubMed  CAS  Google Scholar 

  • Denissova SI, Yewondwossen MH, Andrew JW et al. (2005) A gated deep inspiration breath-hold radiation therapy technique using a linear position transducer. J Appl Clin Med Phys 6:61–70

    Article  PubMed  Google Scholar 

  • Dieckmann K, George D, Zehetmayer M et al. (2003) LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience. Radiother Oncol 67:199–206

    Article  PubMed  Google Scholar 

  • Drzymala RE, Mutic S (1999) Stereotactic imaging quality assurance using an anthropomorphic phantom. Comput Aided Surg 4:248–255

    Article  PubMed  CAS  Google Scholar 

  • Drzymala RE, Klein EE, Simpson JR et al. (1994) Assurance of high quality linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 30:459–472

    PubMed  CAS  Google Scholar 

  • Duggan DM, Coffey CW (1996) Use of a micro-ionization chamber and an anthropomorphic head phantom in a quality assurance program for stereotactic radiosurgery. Med Phys 23:513–516

    Article  PubMed  CAS  Google Scholar 

  • Dunbar SF, Tarbell NJ, Kooy HM (1994) Stereotactic radiotherapy for pediatric and adult brain tumors: preliminary report. Int J Radiat Oncol Biol Phys 30:531–539

    PubMed  CAS  Google Scholar 

  • Emara K, Weisbrod DJ, Sahgal A et al. (2004) Stereotactic radiotherapy in the treatment of juxtapapillary choroidal melanoma: preliminary results. Int J Radiat Oncol Biol Phys 59:94–100

    Article  PubMed  Google Scholar 

  • Ertl A, Hartl RF, Zehetmayer M et al. (1996) TLD array for precise dose measurements in stereotactic radiation techniques. Phys Med Biol 41:2679–2686

    Article  PubMed  CAS  Google Scholar 

  • Ertl A, Berg A, Zehetmayer M et al. (2000) High-resolution dose profile studies based on MR imaging with polymer BANG (TM) gels in stereotactic radiation techniques. Magn Reson Imaging 18:343–349

    Article  PubMed  CAS  Google Scholar 

  • Fidanzio A, Azario L, Miceli R et al. (2000) PTW-diamond detector: dose rate and particle type dependence. Med Phys 27:2589–2593

    Article  PubMed  CAS  Google Scholar 

  • Foroni R, Gambraini G, Danesi U et al. (2000) New dosimetric approach for multidimensional dose evaluation in gamma knife radiosurgery. Technical note. J Neurosurg 93:239–242

    PubMed  Google Scholar 

  • Friedman WA, Bova FJ (1989) The University of Florida radiosurgery system. Surg Neurol 32:334–342

    Article  PubMed  CAS  Google Scholar 

  • Gerszten PC, Ozhasoglu C, Burton SA et al. (2002) Feasibility of frameless single-fraction stereotactic radiosurgery for spinal lesions. Neurosurg Focus 13:e2

    PubMed  Google Scholar 

  • Gerszten PC, Welch WC (2004) CyberKnife radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 15:491–501

    Article  PubMed  Google Scholar 

  • Grebe G (2001) Dynamic arc radiosurgery and radiotherapy: commissioning and verification of dose distributions. Int J Radiat Oncol Biol Phys 49:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Grosu A-L et al. (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11Cmethionine-PET data for stereotactic radiotherapy using a linac: first clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463

    Article  PubMed  Google Scholar 

  • Hamm KD (2004) Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging. J Neurosurg 101:326–333

    PubMed  Google Scholar 

  • Herfarth KK, Debus J, Lohr F et al. (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Saito K, Nishizaki T et al. (2004) CyberKnife radiosurgery for vestibular schwannoma. Minim Invasive Neurosurg 47:290–293

    Article  PubMed  CAS  Google Scholar 

  • Kai J, Shiomi H, Sasama T et al. (1998) Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. Comput Aided Surg 3:257–263

    Article  PubMed  CAS  Google Scholar 

  • Kassaee A, Das IJ, Tochner Z et al. (2003) Modification of Gill-Thomas-Cosman frame for extracranial head-and-neck stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57:1192–1195

    Article  PubMed  Google Scholar 

  • Kellermann PO, Ertl A, Gornik E (1998) A new method of readout in radiochromic film dosimetry. Phys Med Biol 43:2251–2263

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Cho M-J, Kim J-S et al. (2003) Isocenter accuracy in frameless stereotactic radiotherapy using implanted fiducials. Int J Radiat Oncol Biol Phys 56:266–273

    Article  PubMed  Google Scholar 

  • Kooy HM, Dunbar SF, Tarbell NJ (1994) Adaptation and verification of the relocatable Gill-Thomas-Cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 30:685–691

    PubMed  CAS  Google Scholar 

  • Kuo JS, Yu C, Petrovich Z et al. (2003) The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 53:1235–1239

    Article  PubMed  Google Scholar 

  • Lefkopoulos D, Foulquier JN, Petegnief Y et al. (2001) Physical and methodological aspects of multimodality imaging and principles of treatment planning in 3D conformal radiotherapy. Cancer Radiother 5:496–514

    PubMed  CAS  Google Scholar 

  • Leksell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316–319

    PubMed  CAS  Google Scholar 

  • Leksell L (1968) Cerebral radiosurgery: I. Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595

    PubMed  CAS  Google Scholar 

  • Leksell L (1983) Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 46:797–803

    Article  PubMed  CAS  Google Scholar 

  • Levy RP, Schulte RW, Slater JD et al. (1999) Stereotactic radiosurgery: the role of charged particles. Acta Oncol 38:165–169

    Article  PubMed  CAS  Google Scholar 

  • Li S, Rashid A, He S et al. (2004) An new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multileaf collimators using a small detector. Med Phys 31:2020w2032

    Google Scholar 

  • Lindvall P, Bergstrom P, Lofroth P-O et al. (2003) Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery 53:1036–1043

    Article  PubMed  Google Scholar 

  • Lindvall P, Bergstrom P, Lofroth P-O et al. (2005) Hypofractionated conformal stereotactic radiotherapy alone or in combination with whole-brain radiotherapy in patients with cerebral metastases. Int J Radiat Oncol Biol Phys 61:1460–1466

    Article  PubMed  Google Scholar 

  • Lohr F, Debus J, Frank C et al. (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527

    Article  PubMed  CAS  Google Scholar 

  • Low DA, Li Z, Drzymala RE (1995) Minimization of target positioning error in accelerator-based radiosurgery. Med Phys 22:443–448

    Article  PubMed  CAS  Google Scholar 

  • Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381

    PubMed  CAS  Google Scholar 

  • Mack A, Mack G, Weltz D et al. (2003) High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields. Med Phys 30:2399–2409

    Article  PubMed  Google Scholar 

  • Madsen BL, Hsi RA, Pham HT et al. (2003) Intrafractional stability of the prostate using a stereotactic radiotherapy technique. Int J Radiat Oncol Biol Phys 57:1285–1291

    Article  PubMed  Google Scholar 

  • McKerracher C, Thwaites DW (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44:2143–2160

    Article  PubMed  CAS  Google Scholar 

  • Monk JE, Perks JR, Doughty D et al. (2003) Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57:1443–1449

    Article  PubMed  Google Scholar 

  • Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14:91–100

    Article  PubMed  Google Scholar 

  • Neumann M (2002) DICOM-current status and future developments for radiotherapy. Z Med Phys 12:171–176

    PubMed  Google Scholar 

  • Oldham M, Siewerdsen JH, Shetty A et al. (2001) High resolution gel-dosimetry by optical-CT and MR scanning. Med Phys 28:1436–1445

    Article  PubMed  CAS  Google Scholar 

  • Onishi H, Kuriyama K, Komiyama T et al. (2004) Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer 45:45–55

    Article  PubMed  Google Scholar 

  • Pan T (2005) Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med Phys 32:627–634

    Article  PubMed  Google Scholar 

  • Podgorsak EB, Olivier A, Pla M et al. (1988) Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14:115–126

    PubMed  CAS  Google Scholar 

  • Ramani R, Lightstone AW, Mason DL et al. (1994) The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery. Med Phys 21:389–392

    Article  PubMed  CAS  Google Scholar 

  • Remouchamps VM, Letts, Yan D et al. (2003) Three-dimensional evaluation of intra-and interfraction immobilization of lung and chest wall using active breathing control. A reproducibility study with breast cancer patients. Int J Radiat Oncol Biol Phys 57:968–978

    Article  PubMed  Google Scholar 

  • Robar JL, Clark BG (1999) The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry. Med Phys 26:2144–2150

    Article  PubMed  CAS  Google Scholar 

  • Rock JP, Ryu S, Yin FF et al. (2004) The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J Neurooncol 69:319–334

    Article  PubMed  Google Scholar 

  • Scheib SG, Gianolini S (2002) Three-dimensional dose verification using BANG gel: a clinical example. J Neurosurg 97:582–587

    PubMed  Google Scholar 

  • Schell MC, Bova FJ, Larson DA et al. (1995) AAPM report no. 42, Stereotactic radiosurgery, Report of Task Group 42, Radiation Therapy Committee. American Institute of Physics, New York

    Google Scholar 

  • Selch MT, Ahn E, Laskari A et al. (2004) Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 59:101–111

    Article  PubMed  Google Scholar 

  • Shaw E, Scott C, Souhami L et al. (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of Radiation Therapy Oncology Group Protocol 90-05. Int J Radiat Oncol Biol Phys 34:647–654

    Article  PubMed  CAS  Google Scholar 

  • Solberg TD (2001) Dynamic arc radiosurgery field shaping: a comparison with static field conformal and on-coplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1451–1460

    Article  Google Scholar 

  • Somigliana A, Cattaneo GM, Fiorino C et al. (1999) Dosim etry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors. Phys Med Biol 44:887–897

    Article  PubMed  CAS  Google Scholar 

  • Uematsu M, Shioda A, Suda A et al. (2001) Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small-cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 51:666–670

    Article  PubMed  CAS  Google Scholar 

  • Verellen D, Soete G (2003) Quality assurance of a system for improved target localization and patient set-up that combined real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol 67:129–141

    Article  PubMed  Google Scholar 

  • Walton L, Hampshire A, Roper A et al. (2000) Development of a relocatable frame technique for gamma knife radiosurgery. Technical note. J Neurosurg 93:198–202

    PubMed  Google Scholar 

  • Warrington AP, Laing RW, Brada M (1994) Quality assurance in fractionated stereotactic radiotherapy. Radiother Oncol 30:239–246

    Article  PubMed  CAS  Google Scholar 

  • Williams JA (2002) Fractionated stereotactic radiotherapy for acoustic neuromas. Acta Neurochir 144:1249–1254

    Article  CAS  Google Scholar 

  • Williams JA (2003) Fractionated stereotactic radiotherapy for acoustic neuromas: preservation of function versus size. J Clin Neurosci 10:48–52

    Article  PubMed  Google Scholar 

  • Yamamoto M (1999) Gamma Knife radiosurgery: technology, applications and future directions. Neurosurg Clin N Am 10:181–202

    PubMed  CAS  Google Scholar 

  • Yan H (2003) A phantom study on the positioning accuracy of the Novalis system. Med Phys 30:3052–3060

    Article  PubMed  Google Scholar 

  • Yin FF, Zhu J, Yan H et al. (2002) Dosimetric characteristics of Novalis shaped beam surgery unit. Med Phys 29:1729–1738

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simpson, J.R., Drzymala, R.E., Rich, K.M. (2006). Stereotactic Radiosurgery and Radiotherapy. In: Levitt, S.H., Purdy, J.A. (eds) Technical Basis of Radiation Therapy. Medical Radiology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35665-7_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-35665-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21338-3

  • Online ISBN: 978-3-540-35665-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics