Advertisement

Intensity-Modulated Radiation Therapy

  • Daniel A. Low
  • Wei Lu
  • James A. Purdy
  • Carlos A. Perez
  • Seymour H. Levitt
Part of the Medical Radiology book series (MEDRAD)

Keywords

Dose Distribution Radiat Oncol Biol Phys Helical Tomotherapy Electronic Portal Imaging Device Multileaf Collimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agazaryan N, Ullrich W, Lee SP, Solberg TD (2004) A methodology for verification of radiotherapy dose calculation. J Neurosurg 101(Suppl 3):356–361PubMedGoogle Scholar
  2. Ahmad S, Vlachaki MT, Teslow TN, Amosson CM, McGary J, Teh BS, Woo SY, Butler EB, Grant WH III (2005) Impact of setup uncertainty in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with Peacock/IMRT. Med Dosim 30:1–7PubMedGoogle Scholar
  3. Al-Ghazi M, Kwon R, Kuo J, Ramsinghani N, Yakoob R (2001) The University of California, Irvine, experience with tomotherapy using the Peacock system. Med Dosim 26:17–27PubMedGoogle Scholar
  4. Arrans R, Gallardo MI, Rosello J, Sanchez-Doblado F (2005) Additional dose constraints for analytical beam weighting optimization in IMRT. Radiother Oncol 75:224–226PubMedGoogle Scholar
  5. Baker SJ, Budgell GJ, MacKay RI (2005) Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration. Phys Med Biol 50:1377–1392PubMedGoogle Scholar
  6. Barth NH (1990) An inverse problem in radiation therapy. Int J Radiat Oncol Biol Phys 18:425–431PubMedGoogle Scholar
  7. Beaulieua F, Beaulieu L, Tremblay D, Roy R (2004) Simultaneous optimization of beam orientations, wedge filters and field weights for inverse planning with anatomy-based MLC fields. Med Phys 31:1546–1557PubMedGoogle Scholar
  8. Bjarngard B, Kijewski P (1976) The potential of computer control to improve dose distributions in radiation therapy. In: Sternick E (ed) Computer applications in radiation oncology. University Press, HanoverGoogle Scholar
  9. Bjarngard B, Kijewski P, Pashby C (1977) Description of a computer-controlled machine. Int J Radiat Oncol Biol Phys 2:142Google Scholar
  10. Bortfeld T (1999) Optimized planning using physical objectives and constraints. Semin Radiat Oncol 9:20–34PubMedGoogle Scholar
  11. Bortfeld T, Burkelbach J, Boesecke R, Schlegel W (1990) Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol 35:1423–1434PubMedGoogle Scholar
  12. Bortfeld T, Kahler DL, Waldron TJ, Boyer AL (1994) X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 28:723–730PubMedGoogle Scholar
  13. Bortfeld T, Jokivarsi K, Goitein M, Kung J, Jiang SB (2002) Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys Med Biol 47:2203–2220PubMedGoogle Scholar
  14. Bortfeld T, Jiang SB, Rietzel E (2004) Effects of motion on the total dose distribution. Semin Radiat Oncol 14:41–51PubMedGoogle Scholar
  15. Boyer A (1995) Present and future developments in radiotherapy treatment units. Semin Radiat Oncol 5:146–155PubMedGoogle Scholar
  16. Boyer A, Ochran TG, Nyerick CE, Waldron TJ, Huntzinger CJ (1992) Clinical dosimetry for implementation of a multileaf collimator. Med Phys 19:1255–1261PubMedGoogle Scholar
  17. Boyer A, Xing L, Ma CM, Curran B, Hill R, Kania A, Bleier A (1999) Theoretical considerations of monitor unit calculations for intensity modulated beam treatment planning. Med Phys 26:187–195PubMedGoogle Scholar
  18. Brace JA (1982) A computer controlled tele-cobalt unit. Int J Radiat Oncol Biol Phys 8:2011–2013PubMedGoogle Scholar
  19. Brace JA (1985) Computer systems for the control of teletherapy units. In: Orton CG (ed) Progress in medical radiation physics. Plenum, New YorkGoogle Scholar
  20. Brace JA, Davy TJ, Skeggs DB (1981a) Computer-controlled cobalt unit for radiotherapy. Med Biol Eng Comput 19:612–616PubMedGoogle Scholar
  21. Brace JA, Davy TJ, Skeggs DB, Williams HS. (1981b) Conformation therapy at the Royal Free Hospital. A progress report on the tracking cobalt project. Br J Radiol 54:1068–1074PubMedGoogle Scholar
  22. Brahme A (1987) Design principles and clinical possibilities with a new generation of radiation therapy equipment. A review. Acta Oncol 26:403–412PubMedGoogle Scholar
  23. Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12:129–140PubMedGoogle Scholar
  24. Brahme A (1995) Treatment optimization using physical and radiobiological objective functions. In: Smith A (ed) Medical radiology, radiation therapy physics. Springer, Berlin Heidelberg New York, pp 469–474Google Scholar
  25. Brahme A, Roos JE, Lax I (1982) Solution of an integral equation encountered in rotation therapy. Phys Med Biol 27:1221–1229PubMedGoogle Scholar
  26. Budgell GJ, Mott JH, Logue JP, Hounsell AR (2001) Clinical implementation of dynamic multileaf collimation for compensated bladder treatments. Radiother Oncol 59:31–38PubMedGoogle Scholar
  27. Burman C, Chui CS, Kutcher G, Leibel S, Zelefsky M, LoSasso T, Spirou S, Wu Q, Yang J, Stein J, Mohan R, Fuks Z, Ling CC (1997) Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 39:863–873PubMedGoogle Scholar
  28. Carol M (1992) 3-D planning and delivery system for optimized conformal therapy (abstract). Int J Radiat Oncol Biol Phys 24:150Google Scholar
  29. Carol M (1995a) Integrated 3D conformal planning/multivane intensity modulating delivery system for radiotherapy. In: Purdy J, Emami B (eds) 3D radiation treatment planning and conformal therapy. Medical Physics Publishing, Madison, Wisconsin, pp 435–445Google Scholar
  30. Carol M (1995b) A system for planning and rotational delivery of intensity-modulated fields. Int J Imaging Syst Technol 6:56–61Google Scholar
  31. Carol M, Grant WH III, Bleier AR, Kania AA, Targovnik HS, Butler EB, Woo SW (1996a) The field-matching problem as it applies to the peacock three dimensional conformal system for intensity modulation. Int J Radiat Oncol Biol Phys 34:183–187PubMedGoogle Scholar
  32. Carol M, Grant WH III, Pavord D, Eddy P, Targovnik HS, Butler B, Woo S, Figura J, Onufrey V, Grossman R, Selkar R (1996b) Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 66:30–34PubMedGoogle Scholar
  33. Chang J, Mageras GS, Ling CC (2003) Evaluation of rapid dose map acquisition of a scanning liquid-filled ionization chamber electronic portal imaging device. Int J Radiat Oncol Biol Phys 55:1432–1445PubMedGoogle Scholar
  34. Chang J, Obcemea CH, Sillanpaa J, Mechalakos J, Burman C (2004) Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment. Med Phys 31:2091–2096PubMedGoogle Scholar
  35. Chao KS (2002) Protection of salivary function by intensity-modulated radiation therapy in patients with head and neck cancer. Semin Radiat Oncol 12(Suppl 1):20–25PubMedGoogle Scholar
  36. Chao KS, Low DA, Perez CA, Purdy JA (2000) Intensity-modulated radiation therapy in head and neck cancers: the Mallinckrodt experience. Int J Cancer 90:92–103PubMedGoogle Scholar
  37. Chao KS, Majhail N, Huang CJ, Simpson JR, Perez CA, Haughey B, Spector G (2001) Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with oropharyngeal carcinoma: a comparison with conventional techniques. Radiother Oncol 61:275–280PubMedGoogle Scholar
  38. Chen Y, Boyer AL, Ma CM (2000) Calculation of X-ray transmission through a multileaf collimator. Med Phys 27:1717–1726PubMedGoogle Scholar
  39. Chen Z, Xing L, Nath R (2002) Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator. Med Phys 29:2041–2051PubMedGoogle Scholar
  40. Chin LM, Kijewski P, Svensson GK, Chaffey JT, Levene MB, Bjarngard BE (1981) A computer-controlled radiation therapy machine for pelvic and para-aortic nodal areas. Int J Radiat Oncol Biol Phys 7:61–70PubMedGoogle Scholar
  41. Chin LM, Kijewski PK, Svensson GK, Bjarngard BE (1983) Dose optimization with computer-controlled gantry rotation, collimator motion and dose-rate variation. Int J Radiat Oncol Biol Phys 9:723–729PubMedGoogle Scholar
  42. Chui CS, LoSasso T, Spirou S (1994) Dose calculation for photon beams with intensity modulation generated by dynamic jaw or multileaf collimations. Med Phys 21:1237–1244PubMedGoogle Scholar
  43. Chui CS, Spirou S, LoSasso T (1996) Testing of dynamic multileaf collimation. Med Phys 23:635–641PubMedGoogle Scholar
  44. Chui CS, Chan MF, Yorke E, Spirou S, Ling CC (2001) Delivery of intensity-modulated radiation therapy with a conventional multileaf collimator: comparison of dynamic and segmental methods. Med Phys 28:2441–2449PubMedGoogle Scholar
  45. Convery D, Rosenbloom M (1992) The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation. Phys Med Biol 37:1359–1374Google Scholar
  46. Convery DJ, Rosenbloom ME (1995) Treatment delivery accuracy in intensity-modulated conformal radiotherapy. Phys Med Biol 40:979–999PubMedGoogle Scholar
  47. Cooper RE (1978) A gradient method of optimizing external-beam radiotherapy treatment plans. Radiology 128:235–243PubMedGoogle Scholar
  48. Cormack AM (1987) A problem in rotation therapy with X rays. Int J Radiat Oncol Biol Phys 13:623–630PubMedGoogle Scholar
  49. Cormack AM, Cormack RA (1987) A problem in rotation therapy with X-rays: dose distributions with an axis of symmetry. Int J Radiat Oncol Biol Phys 13:1921–1925PubMedGoogle Scholar
  50. Cormack AM, Quinto E (1989) On a problem in radiotherapy: questions on non-negativity. Int J Imaging Syst Technol 1:120–124Google Scholar
  51. Cotrutz C, Xing L (2003) Segment-based dose optimization using a genetic algorithm. Phys Med Biol 48:2987–2998PubMedGoogle Scholar
  52. Davy TJ (1985) Physical aspects of conformation therapy using computer-controlled tracking units. In: Orton CG (ed) Progress in medical radiation physics. Plenum, New YorkGoogle Scholar
  53. Davy TJ, Brace J (1979) Dynamic 3-D treatment using a computer-controlled cobalt unit. Br J Radiol 53:612–616Google Scholar
  54. Davy TJ, Johnson PH, Redford R, Williams JR (1975) Conformation therapy using the tracking cobalt unit. Br J Radiol 48:122–130PubMedGoogle Scholar
  55. De Neve W, de Gersem W, Derycke S, de Meerleer G, Moerman M, Bate MT, van Duyse B, Vakaet L, de Deene Y, Mersseman B, de Wagter C (1999) Clinical delivery of intensity modulated conformal radiotherapy for relapsed or second-primary head and neck cancer using a multileaf collimator with dynamic control. Radiother Oncol 50:301–314PubMedGoogle Scholar
  56. Deasy JO, Niemierko A, Herbert D, Yan D, Jackson A, Ten Haken RK, Langer M, Sapareto S (2002) Methodological issues in radiation dose-volume outcome analyses: summary of a joint AAPM/NIH workshop. Med Phys 29:2109–2127PubMedGoogle Scholar
  57. Dische S, Saunders MI, Williams C, Hopkins A, Aird E (1993) Precision in reporting the dose given in a course of radiotherapy. Radiother Oncol 29:287–293PubMedGoogle Scholar
  58. Djajaputra D, Wu Q, Wu Y, Mohan R (2003) Algorithm and performance of a clinical IMRT beam-angle optimization system. Phys Med Biol 48:3191–3212PubMedGoogle Scholar
  59. Djordjevich A, Bonham DJ, Hussein EM, Andrew JW, Hale ME (1990) Optimal design of radiation compensators. Med Phys 17:397–404PubMedGoogle Scholar
  60. Dogan N, Leybovich LB, Sethi A (2002) Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy. Phys Med Biol 47:4121–4130PubMedGoogle Scholar
  61. Edlund T, Leavitt DD, Gibbs FA Jr (1999) Dosimetric advantages of enhanced dynamic wedge in small field irradiation for the treatment of macular degeneration. Med Dosim 24:21–26PubMedGoogle Scholar
  62. Ellis F, Miller H (1944) The use of wedge filters in deep X-ray therapy. Br J RadiolGoogle Scholar
  63. Ellis F, Hall E, Oliver R (1959) A compensator for variations in tissue thickness for high energy beams. Br J Radiol 32:421–422PubMedGoogle Scholar
  64. Engelsman M, Sharp GC, Bortfeld T, Onimaru R, Shirato H (2005) How much margin reduction is possible through gating or breath hold? Phys Med Biol 50:477–490PubMedGoogle Scholar
  65. Engler M, Tsai J-S, Ling M, Wu J, Palano J, Koistinen M, Kramer B, Fagundes M, Dipertrillo T, Wazer D (1997) Physical and clinical aspects of the dynamic intensity modulated radiotherapy of 44 patients. The 38th annual meeting of the American Society for Therapeutic Radiology and Oncology, Los Angeles, CaliforniaGoogle Scholar
  66. Esthappan J, Mutic S, Harms WB, Dempsey JF, Low DA (2002) Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys 29:2438–2445PubMedGoogle Scholar
  67. Fang G, Geiser B, Mackie TR (1997) Software system for the UW/GH tomotherapy prototype. In: Leavitt DD, Starkschall G (eds) XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Salt Lake City, pp 332–334Google Scholar
  68. Followill D, Geis P, Boyer A (1997) Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 38:667–672PubMedGoogle Scholar
  69. Fraass BA (1994) Computer-controlled three-dimensional conformal therapy delivery systems. In: Purdy J, Fraass BA (eds) Syllabus: a categorical course in physics, three-dimensional radiation therapy treatment planning. Radiological Society of North America, Oak Brook, Illinois, pp 93–100Google Scholar
  70. Fraass BA, McShan DL, Kessler ML (1995) Computer-controlled treatment delivery. Semin Radiat Oncol 5:77–85PubMedGoogle Scholar
  71. Galvin JM, Chen XG, Smith RM (1993) Combining multileaf fields to modulate fluence distributions. Int J Radiat Oncol Biol Phys 27:697–705PubMedGoogle Scholar
  72. Geis P, Boyer AL, Wells NH (1996) Use of a multileaf collimator as a dynamic missing-tissue compensator. Med Phys 23:1199–1205PubMedGoogle Scholar
  73. Goldman SP, Chen JZ, Battista JJ (2005) Feasibility of a fast inverse dose optimization algorithm for IMRT via matrix inversion without negative beamlet intensities. Med Phys 32:3007–3016PubMedGoogle Scholar
  74. Gore JC, Ranade M, Maryanski MJ, Schulz RJ (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels. I. Development of an optical scanner. Phys Med Biol 41:2695–2704PubMedGoogle Scholar
  75. Graham MV, Jain NL, Kahn MG, Drzymala RE, Purdy JA (1996) Evaluation of an objective plan-evaluation model in the three dimensional treatment of nonsmall cell lung cancer. Int J Radiat Oncol Biol Phys 34:469–474PubMedGoogle Scholar
  76. Grant W, Bellezza D (1994) Leakage considerations with a multi-leaf collimator designed for intensity-modulated conformal radiotherapy (abstract). Med Phys 21:921Google Scholar
  77. Grant W III, Cain RB (1998) Intensity modulated conformal therapy for intracranial lesions. Med Dosim 23:237–241PubMedGoogle Scholar
  78. Green A (1965) Tracking cobalt project. Nature 207:1311PubMedGoogle Scholar
  79. Guerrero Urbano MT, Nutting CM (2004a) Clinical use of intensity-modulated radiotherapy, part I. Br J Radiol 77:88–96PubMedGoogle Scholar
  80. Guerrero Urbano MT, Nutting CM (2004b) Clinical use of intensity-modulated radiotherapy, part II. Br J Radiol 77:177–182PubMedGoogle Scholar
  81. Gustafsson A, Lind BK, Brahme A (1994) A generalized pencil beam algorithm for optimization of radiation therapy. Med Phys 21:343–356PubMedGoogle Scholar
  82. Gustafsson A, Lind BK, Svensson R, Brahme A (1995) Simultaneous optimization of dynamic multileaf collimation and scanning patterns or compensation filters using a generalized pencil beam algorithm. Med Phys 22:1141–1156PubMedGoogle Scholar
  83. Hale JI, Kerr AT, Shragge PC (1994) Calibration of film for accurate megavoltage photon dosimetry. Med Dosim 19:43–46PubMedGoogle Scholar
  84. Higgins PD, Alaei P, Gerbi BJ, Dusenbery KE (2003) In vivo diode dosimetry for routine quality assurance in IMRT. Med Phys 30:3118–3123PubMedGoogle Scholar
  85. Holmes T, Mackie TR (1994) A filtered backprojection dose calculation method for inverse treatment planning. Med Phys 21:303–313PubMedGoogle Scholar
  86. Holmes T, Mackie TR, Simpkin D, Reckwerdt P (1991) A unified approach to the optimization of brachytherapy and external beam dosimetry. Int J Radiat Oncol Biol Phys 20:859–873PubMedGoogle Scholar
  87. Hong TS, Tome WA, Chappell RJ, Chinnaiyan P, Mehta MP, Harari PM (2005) The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 61:779–788PubMedGoogle Scholar
  88. Hope C, Orr J (1965) Computer optimization of 4 MeV treatment planning. Phys Med Biol 10:365–370Google Scholar
  89. Hou Q, Wang J, Chen Y, Galvin JM (2003) Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics. Med Phys 30:2360–2367PubMedGoogle Scholar
  90. Hounsell AR, Wilkinson JM (1997) Head scatter modeling for irregular field shaping and beam intensity modulation. Phys Med Biol 42:1737–1749PubMedGoogle Scholar
  91. Islam KT, Dempsey JF, Ranade MK, Maryanski MJ, Low DA (2003) Initial evaluation of commercial optical CT-based 3D gel dosimeter. Med Phys 30:2159–2168PubMedGoogle Scholar
  92. Jain N, Kahn M, Grahm M, Purdy JA (1994) 3D conformal radiation therapy. V. In: Hounsell AR, Wilkinson JM, Williams PC (eds) Decision-theoretic evaluation on radiation treatment plans. Proc XIth International Conference on the Use of Computers in Radiation Therapy. Manchester, UK, pp 8–9Google Scholar
  93. Jeraj R, Mackie TR, Balog J, Olivera G, Pearson D, Kapatoes J, Ruchala K, Reckwerdt P (2004) Radiation characteristics of helical tomotherapy. Med Phys 31:396–404PubMedGoogle Scholar
  94. Kallman P, Lind B, Eklof A, Brahme A (1988) Shaping of arbitrary dose distributions by dynamic multileaf collimation. Phys Med Biol 33:1291–1300PubMedGoogle Scholar
  95. Kam MK, Chau RM, Suen J, Choi PH, Teo PM (2003) Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation. Int J Radiat Oncol Biol Phys 56:145–157PubMedGoogle Scholar
  96. Kam MK, Teo PM, Chau RM, Cheung KY, Choi PH, Kwan WH, Leung SF, Zee B, Chan AT (2004) Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. Int J Radiat Oncol Biol Phys 60:1440–1450PubMedGoogle Scholar
  97. Kelly RG, Jordan KJ, Battista JJ (1998) Optical CT reconstruction of 3D dose distributions using the ferrous-benzoicxylenol (FBX) gel dosimeter. Med Phys 25:1741–1750PubMedGoogle Scholar
  98. Kijewski PK, Chin LM, Bjarngard BE (1978) Wedge-shaped dose distributions by computer-controlled collimator motion. Med Phys 5:426–429PubMedGoogle Scholar
  99. Kirkpatric S (1985) Optimization by simulated annealing. Science 220:671–680Google Scholar
  100. Klein E (1994) Implementation and clinical use of multileaf collimation. In: Purdy JA, Fraass BA (eds) Syllabus: a categorical course in physics, three-dimensional radiation therapy treatment planning. Radiological Society of North America, Oak Brook, IllinoisGoogle Scholar
  101. Klein EE, Low DA, Meigooni AS, Purdy JA (1995) Dosimetry and clinical implementation of dynamic wedge. Int J Radiat Oncol Biol Phys 31:583–592PubMedGoogle Scholar
  102. Klein EE, Gerber R, Zhu XR, Oehmke F, Purdy JA (1998) Multiple machine implementation of enhanced dynamic wedge. Int J Radiat Oncol Biol Phys 40:977–985PubMedGoogle Scholar
  103. Kubo HD, Wang L (2000) Compatibility of Varian 2100C gated operations with enhanced dynamic wedge and IMRT dose delivery. Med Phys 27:1732–1738PubMedGoogle Scholar
  104. Kung JH, Chen GT, Kuchnir FK (2000) A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance. Med Phys 27:2226–2230PubMedGoogle Scholar
  105. Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, Palta JR, Purdy JA, Reinstein LE, Svensson GK et al (1994) Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. Med Phys 21:581–618PubMedGoogle Scholar
  106. Langer M, Leong J (1987) Optimization of beam weights under dose-volume restrictions. Int J Radiat Oncol Biol Phys 13:1255–1260PubMedGoogle Scholar
  107. Langer M, Brown R, Urie M, Leong J, Stracher M, Shapiro J (1990) Large scale optimization of beam weights under dose-volume restrictions. Int J Radiat Oncol Biol Phys 18:887–893PubMedGoogle Scholar
  108. Langer M, Brown R, Kijewski P, Ha C (1993) The reliability of optimization under dose-volume limits. Int J Radiat Oncol Biol Phys 26:529–538PubMedGoogle Scholar
  109. Leavitt DD, Martin M, Moeller JH, Lee WL (1990) Dynamic wedge field techniques through computer-controlled collimator motion and dose delivery. Med Phys 17:87–91PubMedGoogle Scholar
  110. Leavitt DD, Huntzinger C, Etmektzoglou T (1997) Dynamic collimator and dose rate control: enabling technology for enhanced dynamic wedge. Med Dosim 22:167–170PubMedGoogle Scholar
  111. Leavitt DD, Williams G, Tobler M, Moeller JH, Gibbs FA Jr, Gaffney DK (2000) Application of enhanced dynamic wedge to stereotactic radiotherapy. Med Dosim 25:61–69PubMedGoogle Scholar
  112. Lee EK, Fox T, Crocker I (2005) Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol PhysGoogle Scholar
  113. Letourneau D, Gulam M, Yan D, Oldham M, Wong JW (2004) Evaluation of a 2D diode array for IMRT quality assurance. Radiother Oncol 70:199–206PubMedGoogle Scholar
  114. Li JS, Boyer AL, Ma CM (2001) Verification of IMRT dose distributions using a water beam imaging system. Med Phys 28:2466–2474PubMedGoogle Scholar
  115. Lian J, Cotrutz C, Xing L (2003) Therapeutic treatment plan optimization with probability density-based dose prescription. Med Phys 30:655–666PubMedGoogle Scholar
  116. Lind BK, Kallman P (1990) Experimental verification of an algorithm for inverse radiation therapy planning. Radiother Oncol 17:359–368PubMedGoogle Scholar
  117. Ling CC, Burman C, Chui CS, Kutcher GJ, Leibel SA, LoSasso T, Mohan R, Bortfeld T, Reinstein L, Spirou S, Wang XH, Wu Q, Zelefsky M, Fuks Z (1996) Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 35:721–730PubMedGoogle Scholar
  118. Lof J, Lind BK, Brahme A (1998) An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion. Phys Med Biol 43:1605–1628PubMedGoogle Scholar
  119. Low D, Dempsey JF (2003) Evaluation of the gamma dose distribution comparison method. Med Phys 30:2455–2464PubMedGoogle Scholar
  120. Low D, Mutic S (1997) Abutment region dosimetry for sequential arc IMRT delivery. Phys Med Biol 42:1465–1470PubMedGoogle Scholar
  121. Low D, Mutic S (1998) A commercial IMRT treatment-planning dose-calculation algorithm. Int J Radiat Oncol Biol Phys 41:933–937PubMedGoogle Scholar
  122. Low D, Zhu X, Harms W, Purdy JA (1996a) Beam-intensity modulation using physical modulators (abstract). Med Phys 23:1001Google Scholar
  123. Low D, Li Z, Klein EE (1996b) Verification of milled twodimensional photon compensating filters using an electronic portal imaging device. Med Phys 23:929–938PubMedGoogle Scholar
  124. Low D, Zhu XR, Purdy JA, Soderstrom S (1997) The influence of angular misalignment on fixed-portal intensity modulated radiation therapy. Med Phys 24:1123–1139PubMedGoogle Scholar
  125. Low D, Gerber R, Mutic S, Purdy JA (1998a) Phantoms for IMRT dose distribution measurement and treatment verification. Int J Radiat Oncol Biol Phys 40:1231–1235PubMedGoogle Scholar
  126. Low D, Chao KS, Mutic S, Gerber RL, Perez CA, Purdy JA (1998b) Quality assurance of serial tomotherapy for head and neck patient treatments. Int J Radiat Oncol Biol Phys 42:681–692PubMedGoogle Scholar
  127. Low D, Harms WB, Mutic S, Purdy JA (1998c) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661PubMedGoogle Scholar
  128. Low D, Mutic S, Dempsey JF, Gerber RL, Bosch WR, Perez CA, Purdy JA (1998d) Quantitative dosimetric verification of an IMRT planning and delivery system. Radiother Oncol 49:305–316PubMedGoogle Scholar
  129. Low D, Markman J, Dempsey JF, Mutic S, Oldham M, Venkatesan R, Haacke EM, Purdy JA (2000) Noise in polymer gel measurements using MRI. Med Phys 27:1814–1817PubMedGoogle Scholar
  130. Low D, Sohn JW, Klein EE, Markman J, Mutic S, Dempsey JF (2001) Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy. Med Phys 28:752–756PubMedGoogle Scholar
  131. Ma CM, Pawlicki T, Jiang SB, Li JS, Deng J, Mok E, Kapur A, Xing L, Ma L, Boyer AL (2000) Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system. Phys Med Biol 45:2483–2495PubMedGoogle Scholar
  132. Ma CM, Jiang SB, Pawlicki T, Chen Y, Li JS, Deng J, Boyer AL (2003) A quality assurance phantom for IMRT dose verification. Phys Med Biol 48:561–572PubMedGoogle Scholar
  133. Ma L, Boyer AL, Ma CM, Xing L (1999) Synchronizing dynamic multileaf collimators for producing two-dimensional intensity-modulated fields with minimum beam delivery time. Int J Radiat Oncol Biol Phys 44:1147–1154PubMedGoogle Scholar
  134. Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20:1709–1719PubMedGoogle Scholar
  135. Mackie TR, Aldridge S, Angelos L, Balog J, Coon S, Fang G, Fitchard E, Geiser B, Glass M, Iosevich S, Kapatoes J, McNutt TR (1997) Tomotherapy: rethinking the process of radiotherapy. In: Leavitt DD, Starkschall G (eds) XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Salt Lake City, pp 329–331Google Scholar
  136. Mackie TR, Balog J, Ruchala K, Shepard D, Aldridge S, Fitchard E, Reckwerdt P, Olivera G, McNutt T, Mehta M (1999) Tomotherapy. Semin Radiat Oncol 9:108–117PubMedGoogle Scholar
  137. Mackie TR, Kapatoes J, Ruchala K, Lu W, Wu C, Olivera G, Forrest L, Tome W, Welsh J, Jeraj R, Harari P, Reckwerdt P, Paliwal B, Ritter M, Keller H, Fowler J, Mehta M (2003) Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 56:89–105PubMedGoogle Scholar
  138. Mageras GS, Mohan R (1993) Application of fast simulated annealing to optimization of conformal radiation treatments. Med Phys 20:639–647PubMedGoogle Scholar
  139. Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455PubMedGoogle Scholar
  140. Maryanski MJ, Ibbott GS, Eastman P, Schulz RJ, Gore JC (1996a) Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med Phys 23:699–705PubMedGoogle Scholar
  141. Maryanski MJ, Zastavker YZ, Gore JC (1996b) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels. II. Optical properties of the BANG polymer gel. Phys Med Biol 41:2705–2717PubMedGoogle Scholar
  142. Maryanski MJ, Audet C, Gore JC (1997) Effects of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter. Phys Med Biol 42:303–311PubMedGoogle Scholar
  143. Mayer R, Williams A, Frankel T, Cong Y, Simons S, Yang N, Timmerman R (1997) Two-dimensional film dosimetry application in heterogeneous materials exposed to megavoltage photon beams. Med Phys 24:455–460PubMedGoogle Scholar
  144. McCurdy BM, Luchka K, Pistorius S (2001) Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device. Med Phys 28:911–924PubMedGoogle Scholar
  145. McDonald SC, Rubin P (1977) Optimization of external beam radiation therapy. Int J Radiat Oncol Biol Phys 2:307–317PubMedGoogle Scholar
  146. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092Google Scholar
  147. Meyer J, Purdy J (eds) (1996) 3-D conformal radiotherapy. Frontiers in radiation therapy and oncology. Karger, Basel, SwitzerlandGoogle Scholar
  148. Mohan R, Mageras GS, Baldwin B, Brewster LJ, Kutcher GJ, Leibel S, Burman CM, Ling CC, Fuks Z (1992) Clinically relevant optimization of 3-D conformal treatments. Med Phys 19:933–944PubMedGoogle Scholar
  149. Mohan R, Lovelock M, Mageras G, LoSasso T, Chui CS (1996a) Computer controlled radiation therapy and multileaf collimation. In: Meyer J, Purdy JA (eds) A new era in the irradiation of cancer. Karger, New York, pp 123–138Google Scholar
  150. Mohan R, Wang XH, Jackson A (1996b) Optimization of 3-D conformal radiation treatment plans. Front Radiat Ther Oncol 29:86–103PubMedGoogle Scholar
  151. Moran JM, Roberts DA, Nurushev TS, Antonuk LE, El-Mohri Y, Fraass BA (2005) An Active Matrix Flat Panel Dosimeter (AMFPD) for in-phantom dosimetric measurements. Med Phys 32:466–472PubMedGoogle Scholar
  152. Morrill S, Lane RG, Rosen I (1990) Constrained simulated annealing for optimized radiation therapy treatment planning. Comput Methods Progr Biomed 33:135–144Google Scholar
  153. Morrill SM, Lane RG, Jacobson G, Rosen I (1991) Treatment planning optimization using constrained simulated annealing. Phys Med Biol 36:1341–1361PubMedGoogle Scholar
  154. Mott JH, Hounsell AR, Budgell GJ, Wilkinson JM, Williams PC (1999) Customised compensation using intensity modulated beams delivered by dynamic multileaf collimation. Radiother Oncol 53:59–65PubMedGoogle Scholar
  155. Mutic S, Low D (1997) Whole body dose from arc-based IMRT treatment (abstract). Int J Radiat Oncol Biol Phys 24:1368Google Scholar
  156. Niemierko A (1992) Random search algorithm (RONSC) for optimization of radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23:89–98PubMedGoogle Scholar
  157. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110PubMedGoogle Scholar
  158. Niemierko A (1998) Radiobiological models of tissue response to radiation in treatment planning systems. Tumori 84:140–143PubMedGoogle Scholar
  159. Niemierko A, Urie M, Goitein M (1992) Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23:99–108PubMedGoogle Scholar
  160. Niroomand-Rad A, Blackwell CR, Coursey BM, Gall KP, Galvin JM, McLaughlin WL, Meigooni AS, Nath R, Rodgers JE, Soares CG (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine. Med Phys 25:2093–2115PubMedGoogle Scholar
  161. Nutting CM, Convery DJ, Cosgrove VP, Rowbottom C, Vini L, Harmer C, Dearnaley DP, Webb S (2001) Improvements in target coverage and reduced spinal cord irradiation using intensity-modulated radiotherapy (IMRT) in patients with carcinoma of the thyroid gland. Radiother Oncol 60:173–180PubMedGoogle Scholar
  162. Olafsson A, Jeraj R, Wright SJ (2005) Optimization of intensitymodulated radiation therapy with biological objectives. Phys Med Biol 50:5357–5379PubMedGoogle Scholar
  163. Olch AJ (2002) Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance. Med Phys 29:2159–2168PubMedGoogle Scholar
  164. Palta JR, Kim S, Li JG, Liu C (2003) Tolerance limits and action levels for planning and delivery of IMRT. In: Palta JR, Mackie TR (eds) Intensity-modulated radiation therapy: the state of the art. Medical Physics, Madison, WisconsinGoogle Scholar
  165. Pawlicki T, Ma CM (2001) Monte Carlo simulation for MLCbased intensity-modulated radiotherapy. Med Dosim 26:157–168PubMedGoogle Scholar
  166. Powers WE, Kinzie JJ, Demidecki AJ, Bradfield JS, Feldman A (1973) A new system of field shaping for external-beam radiation therapy. Radiology 108:407–411PubMedGoogle Scholar
  167. Proimos BS (1960) Synchronous field shaping in rotational megavolt therapy. Radiology 74:753–757PubMedGoogle Scholar
  168. Proimos BS (1966) Beam-shapers oriented by gravity in rotational therapy. Radiology 87:928–932PubMedGoogle Scholar
  169. Redpath AT, Vickery BL, Wright DH (1976) A new technique for radiotherapy planning using quadratic programming. Phys Med Biol 21:781–791PubMedGoogle Scholar
  170. Richter J, Neumann M, Bortfeld T (1997) Dynamic multileaf collimator rotation techniques versus intensity modulated fixed fields. In: Leavitt D, Starkschall G (eds) XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Salt Lake City, pp 335–337Google Scholar
  171. Rosen II, Morrill SM, Lane RG (1992) Optimized dynamic rotation with wedges. Med Phys 19:971–977PubMedGoogle Scholar
  172. Sauer O, Shepard D, Angelos L, Mackie TR (1997) A comparison of objective funtions for use in radiotherapy optimization. In: Leavitt D, Starkschall G (eds) XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Salt Lake CityGoogle Scholar
  173. Saw CB, Ayyangar KM, Thompson RB, Zhen W, Enke CA (2001a) Commissioning of peacock system for intensitymodulated radiation therapy. Med Dosim 26:55–64PubMedGoogle Scholar
  174. Saw CB, Ayyangar KM, Zhen W, Thompson RB, Enke CA (2001b) Quality assurance procedures for the Peacock system. Med Dosim 26:83–90PubMedGoogle Scholar
  175. Scholz C, Nill S, Oelfke U (2003) Comparison of IMRT optimization based on a pencil beam and a superposition algorithm. Med Phys 30:1909–1913PubMedGoogle Scholar
  176. Schultheiss TE, Orton CG (1985) Models in radiotherapy: definition of decision criteria. Med Phys 12:183–187PubMedGoogle Scholar
  177. Seco J, Evans PM, Webb S (2002) An optimization algorithm that incorporates IMRT delivery constraints. Phys Med Biol 47:899–915PubMedGoogle Scholar
  178. Siebers JV, Keall PJ, Wu Q, Williamson JF, Schmidt-Ullrich RK (2005) Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans. Int J Radiat Oncol Biol Phys 63:422–433PubMedGoogle Scholar
  179. Sodertrom S, Brahme A (1993) Optimization of the dose delivery in a few field techniques using radiobiological objective functions. Med Phys 20:1201–1210PubMedGoogle Scholar
  180. Spirou SV, Chui CS (1994) Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys 21:1031–1041PubMedGoogle Scholar
  181. Spirou SV, Chui CS (1998) A gradient inverse planning algorithm with dose-volume constraints. Med Phys 25:321–333PubMedGoogle Scholar
  182. Starkschall G (1984) A constrained least-squares optimization method for external beam radiation therapy treatment planning. Med Phys 11:659–665PubMedGoogle Scholar
  183. Stavrev P, Hristov D, Warkentin B, Sham E, Stavreva N, Fallone BG (2003) Inverse treatment planning by physically constrained minimization of a biological objective function. Med Phys 30:2948–2958PubMedGoogle Scholar
  184. Stein J, Bortfeld T, Dorschel B, Schlegel W (1994) Dynamic Xray compensation for conformal radiotherapy by means of multi-leaf collimation. Radiother Oncol 32:163–173PubMedGoogle Scholar
  185. Stein J, Hartwig K, Levergrun S, Zhang G, Preiser K, Rhein B, Debus J, Bortfeld T (1997) Intensity-modulated treatments: compensators vs. multileaf modulation. In: Leavitt D, Starkschall G (eds) XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Salt Lake City, pp 338–341Google Scholar
  186. Stevens MA, Turner JR, Hugtenburg RP, Butler PH (1996) High-resolution dosimetry using radiochromic film and a document scanner. Phys Med Biol 41:2357–2365PubMedGoogle Scholar
  187. Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, Webster EW, Shalek RJ (1995) Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group no 36. Med Phys 22:63–82PubMedGoogle Scholar
  188. Svensson R, Kallman P, Brahme A (1994) An analytical solution for the dynamic control of multileaf collimators. Phys Med Biol 39:37–61PubMedGoogle Scholar
  189. Takahashi S (1965) Conformation radiotherapy. Rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Diagn (Stockh) (Suppl) 242:241Google Scholar
  190. Teh BS, Mai WY, Augspurger ME, Uhl BM, McGary J, Dong L, Grant WH III, Lu HH, Woo SY, Carpenter LS, Chiu JK, Butler EB (2001a) Intensity modulated radiation therapy (IMRT) following prostatectomy: more favorable acute genitourinary toxicity profile compared to primary IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 49:465–472PubMedGoogle Scholar
  191. Teh BS, Mai WY, Uhl BM, Augspurger ME, Grant WH, III, Lu HH, Woo SY, Carpenter LS, Chiu JK, Butler EB (2001b) Intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of a rectal balloon for prostate immobilization: acute toxicity and dose-volume analysis. Int J Radiat Oncol Biol Phys 49:705–712PubMedGoogle Scholar
  192. Trump JG, Wright KA, Smedal MI, Salzman FA (1961) Synchronous field shaping and protection in 2-million-volt rotational therapy. Radiology 76:275PubMedGoogle Scholar
  193. Van Battum LJ, Heijmen BJ (1995) Film dosimetry in water in a 23-mV therapeutic photon beam. Radiother Oncol 34:152–159PubMedGoogle Scholar
  194. Van Dyk J, Barnett RB, Cygler JE, Shragge PC (1993) Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys 26:261–273PubMedGoogle Scholar
  195. Van Esch A, Vanstraelen B, Verstraete J, Kutcher G, Huyskens D (2001) Pre-treatment dosimetric verification by means of a liquid-filled electronic portal imaging device during dynamic delivery of intensity modulated treatment fields. Radiother Oncol 60:181–190PubMedGoogle Scholar
  196. Van Esch A, Depuydt T, Huyskens DP (2004) The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiother Oncol 71:223–234PubMedGoogle Scholar
  197. Van Santvoort JP, Heijmen BJ (1996) Dynamic multileaf collimation without “tongue-and-groove” underdosage effects. Phys Med Biol 41:2091–2105PubMedGoogle Scholar
  198. Verellen D, Linthout N, van den Berge D, Bel A, Storme G (1997) Initial experience with intensity-modulated conformal radiation therapy for treatment of the head and neck region. Int J Radiat Oncol Biol Phys 39:99–114PubMedGoogle Scholar
  199. Webb S (1989) Optimisation of conformal radiotherapy dose distributions by simulated annealing. Phys Med Biol 34:1349–1370PubMedGoogle Scholar
  200. Webb S (1991a) Optimization by simulated annealing of threedimensional conformal treatment planning for radiation fields defined by a multileaf collimator. Phys Med Biol 36:1201–1226PubMedGoogle Scholar
  201. Webb S (1991b) Optimization of conformal radiotherapy dose distributions by simulated annealing. 2. Inclusion of scatter in the 2D technique. Phys Med Biol 36:1227–1237PubMedGoogle Scholar
  202. Webb S (1992) Optimization by simulated annealing of threedimensional, conformal treatment planning for radiation fields defined by a multileaf collimator. II. Inclusion of twodimensional modulation of the X-ray intensity. Phys Med Biol 37:1689–1704PubMedGoogle Scholar
  203. Webb S (1993) The physics of three-dimensional radiation therapy. Institute of Physics Publishing, Bristol, p 373Google Scholar
  204. Webb S, Oldham M (1996) A method to study the characteristics of 3D dose distributions created by superposition of many intensity-modulated beams delivered via a slit aperture with multiple absorbing vanes. Phys Med Biol 41:2135–2153PubMedGoogle Scholar
  205. Webb S, Bortfeld T, Stein J, Convery D (1997) The effect of stair-step leaf transmission on the “tongue-and-groove problem” in dynamic radiotherapy with a multileaf collimator. Phys Med Biol 42:595–602PubMedGoogle Scholar
  206. Welsh JS, Patel RR, Ritter MA, Harari PM, Mackie TR, Mehta MP (2002) Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat 1:311–316PubMedGoogle Scholar
  207. Wiezorek T, Banz N, Schwedas M, Scheithauer M, Salz H, Georg D, Wendt TG (2005) Dosimetric quality assurance for intensity-modulated radiotherapy feasibility study for a filmless approach. Strahlenther Onkol 181:468–474PubMedGoogle Scholar
  208. Williamson JF, Khan FM, Sharma SC (1981) Film dosimetry of megavoltage photon beams: a practical method of isodensity-to-isodose curve conversion. Med Phys 8:94–98PubMedGoogle Scholar
  209. Winkler P, Zurl B, Guss H, Kindl P, Stuecklschweiger G (2005) Performance analysis of a film dosimetric quality assurance procedure for IMRT with regard to the employment of quantitative evaluation methods. Phys Med Biol 50:643–654PubMedGoogle Scholar
  210. Wolodzko JG, Marsden C, Appleby A (1999) CCD imaging for optical tomography of gel radiation dosimeters. Med Phys 26:2508–2513PubMedGoogle Scholar
  211. Woo SY, Sanders M, Grant W, Butler EB (1994) Does the “peacock” have anything to do with radiotherapy? Int J Radiat Oncol Biol Phys 29:213–214PubMedGoogle Scholar
  212. Wright KA, Proimos BS, Trump JG, Smedal MI, Johnson D, Salzman FA (1959) Field shaping and protection in 2-million-volt rotational therapy. Radiology 72:101Google Scholar
  213. Wu A, Johnson M, Chen AS, Kalnicki S (1996) Evaluation of dose calculation algorithm of the peacock system for multileaf intensity modulation collimator. Int J Radiat Oncol Biol Phys 36:1225–1231PubMedGoogle Scholar
  214. Wu Q, Manning M, Schmidt-Ullrich R, Mohan R (2000) The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design study. Int J Radiat Oncol Biol Phys 46:195–205PubMedGoogle Scholar
  215. Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52:224–235PubMedGoogle Scholar
  216. Xiao Y, Michalski D, Censor Y, Galvin JM (2004) Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms. Phys Med Biol 49:3227–3245PubMedGoogle Scholar
  217. Xing L, Chen GT (1996) Iterative methods for inverse treatment planning. Phys Med Biol 41:2107–2123PubMedGoogle Scholar
  218. Xing L, Curran B, Hill R, Holmes T, Ma L, Forster KM, Boyer AL (1999) Dosimetric verification of a commercial inverse treatment planning system. Phys Med Biol 44:463–478PubMedGoogle Scholar
  219. Xing L, Chen Y, Luxton G, Li JG, Boyer AL (2000) Monitor unit calculation for an intensity modulated photon field by a simple scatter-summation algorithm. Phys Med Biol 45: N1–N7PubMedGoogle Scholar
  220. Yan H, Yin FF, Guan HQ, Kim JH (2003) AI-guided parameter optimization in inverse treatment planning. Phys Med Biol 48:3565–3580PubMedGoogle Scholar
  221. Yan Y, Papanikolaou N, Weng X, Penagaricano J, Ratanatharathorn V (2005) Fast radiographic film calibration procedure for helical tomotherapy intensity modulated radiation therapy dose verification. Med Phys 32:1566–1570PubMedGoogle Scholar
  222. Yang J, Li J, Chen L, Price R, McNeeley S, Qin L, Wang L, Xiong W, Ma CM (2005) Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer. Phys Med Biol 50:869–878PubMedGoogle Scholar
  223. Yang Y, Xing L (2004) Clinical knowledge-based inverse treatment planning. Phys Med Biol 49:5101–5117PubMedGoogle Scholar
  224. Yu CX (1995) Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 40:1435–1449PubMedGoogle Scholar
  225. Yu CX, Symons MJ, Du MN, Martinez AA, Wong JW (1995) A method for implementing dynamic photon beam intensity modulation using independent jaws and a multileaf collimator. Phys Med Biol 40:769–787PubMedGoogle Scholar
  226. Yu CX, Jaffray DA, Wong JW (1997) Calculating the effects of intra-treatment organ motion on dynamic intensity modulation. In: Leavitt DD, Starkschall G (eds) XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Salt Lake City, pp 231–233Google Scholar
  227. Zelefsky MJ, Fuks Z, Happersett L, Lee HJ, Ling CC, Burman CM, Hunt M, Wolfe T, Venkatraman ES, Jackson A, Skwarchuk M, Leibel SA (2000) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55:241–249PubMedGoogle Scholar
  228. Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116PubMedGoogle Scholar
  229. Zhang X, Liu H, Wang X, Dong L, Wu Q, Mohan R (2004) Speed and convergence properties of gradient algorithms for optimization of IMRT. Med Phys 31:1141–1152PubMedGoogle Scholar
  230. Zhu XR, Jursinic PA, Grimm DF, Lopez F, Rownd JJ, Gillin MT (2002) Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med Phys 29:1687–1692PubMedGoogle Scholar
  231. Zhu Y, Kirov AS, Mishra V, Meigooni AS, Williamson JF (1997) Quantitative evaluation of radiochromic film response for two-dimensional dosimetry. Med Phys 24:223–231PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel A. Low
    • 1
  • Wei Lu
    • 1
  • James A. Purdy
    • 2
  • Carlos A. Perez
    • 1
  • Seymour H. Levitt
    • 3
  1. 1.Department of Radiation Oncology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Radiation OncologyUniversity of California Davis Medical CenterSacramentoUSA
  3. 3.Department of Therapeutic Radiation OncologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations