Skip to main content

Conditional Averaging for Diffusive Fast-Slow Systems: A Sketch for Derivation

  • Conference paper

Summary

This article is concerned with stochastic differential equations with disparate temporal scales. We consider cases where the fast mode of the system rarely switches from one almost invariant set in its state space to another one such that the time scale of the switching is as slow as the slow modes of the system. In such cases descriptions for the effective dynamics cannot be derived by means of standard averaging schemes. Instead a generalization of averaging, called conditional averaging, allows to describe the effective dynamics appropriately. The basic idea of conditional averaging is that the fast process can be decomposed into several ‘almost irreducible’ sub-processes, each of which can be treated by standard averaging and corresponds to one metastable or almost invariant state. Rare transitions between these states are taken into account by means of an appropriate Markov jump process that describes the transitions between the states. The article gives a derivation of conditional averaging for a class of systems where the fast process is a diffusion in a double well potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin, 1993.

    MATH  Google Scholar 

  2. A. Bensoussan, J. L. Lions, G. Papanicolaou. Asymptotic Analysis for Periodic Structures. Elsevier Science & Technology Books, July 1978.

    Google Scholar 

  3. F. A. Bornemann. Homogenization in Time of Singularly Perturbed Mechanical Systems. Number 1687 in Lecture Notes in Mathematics. Springer-Verlag, 1998.

    Google Scholar 

  4. F. A. Bornemann and C. Schütte. Homogenization of Hamiltonian systems with a strong constraining potential. Physica D, 102:57–77, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. A. Bornemann and C. Schütte. On the singular limit of the quantumclassical molecular dynamics model. 1999, 59:1208–1224, SIAM J. Appl. Math.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes I: Sharp estimates for capacities and exit times. J. Eur. Math. Soc., 6:399–424, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes II: Precise estimates for small eigenvalues. J. Eur. Math. Soc., 7:69–99, 2005.

    MATH  MathSciNet  Google Scholar 

  8. M. Freidlin. The averaging principle and theorems on large deviations. Russ. Math. Surv., 33(5):107–160, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Freidlin and A. Wentzell. Random Perturbations of Dynamical Systems. Springer, New York, 1984. Series in Comprehensive Studies in Mathematics.

    MATH  Google Scholar 

  10. C. W. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, 2nd enlarged edition edition, 1985.

    Google Scholar 

  11. B. Helffer, M. Klein, and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a witten complex approach. preprint, 2004.

    Google Scholar 

  12. I. Horenko, B. Schmidt, and C. Schütte. A theoretical model for molecules interacting with intense laser pulses: The Floquet-based quantum-classical Liouville equation. J. Chem. Phys., 115(13):5733–5743, 2001.

    Article  Google Scholar 

  13. W. Huisinga. Metastability of Markovian systems: A transfer operator based approach in application to molecular dynamics. PhD thesis, Free University Berlin, 2001.

    Google Scholar 

  14. W. Huisinga, S. Meyn, and C. Schütte. Phase transitions & metastability in Markovian and molecular systems. accepted in Ann. Appl. Probab., 2002.

    Google Scholar 

  15. Y. Kifer. Averaging in dynamical systems and large deviations. Invent. Math., 110:337–370, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Kifer. Stochastic versions of Anosov’s and Neistadt’s theorems on averaging. SD, 1:1–21, 2001.

    MATH  MathSciNet  Google Scholar 

  17. Y. Kifer. L 2-diffusion approximation for slow motion in averaging. preprint, 2002.

    Google Scholar 

  18. T. G. Kurtz. A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal., 12:55–67, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A mathematical framework for stochastic climate models. Comm. Pure Applied Math., 54:891–974, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Models for stochastic climate prediction. Proc. Natl. Acad. Sci., 96(26):14687–14691, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A priori tests of a stochastic mode reduction strategy. Physica D, 170:206–252, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Mori. Transport collective motion and Brownian motion. Prog. Th. Phys. Supp., 33:423–455, 1965.

    Article  MATH  Google Scholar 

  23. G. Papanicolaou. Some probabilistic problems and methods in singular perturbation. Rocky Mountain Math. J., 6:653–674, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  24. I. Pavlyukevich. Stochastic Resonance. Logos, Berlin, 2002.

    Google Scholar 

  25. J. Sanders and F. Verhulst. Averaging Methods in Nonlinear Dynamical Systems. Springer, New York, 1985.

    MATH  Google Scholar 

  26. C. Schütte and W. Huisinga. On conformational dynamics induced by Langevin processes. In B. Fiedler, K. Gröger, and J. Sprekels, editors, EQUADIFF 99-International Conference on Differential Equations, volume 2, pages 1247–1262, Singapore, 2000. World Scientific.

    Google Scholar 

  27. C. Schütte and W. Huisinga. Biomolecular conformations can be identified as metastable sets of molecular dynamics. In P. G. Ciaret and J.-L. Lions, editors, Handbook of Numerical Analysis, volume Computational Chemistry. North-Holland, 2002. in press.

    Google Scholar 

  28. C. Schütte, W. Huisinga, and P. Deuflhard. Transfer operator approach to conformational dynamics in biomolecular systems. In B. Fiedler, editor, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pages 191–223. Springer, 2001.

    Google Scholar 

  29. C. Schütte, J. Walter, C. Hartmann, and W. Huisinga. An averaging principle for fast degrees of freedom exhibiting long-term correlations. SIAM Multiscale Modeling and Simulation, submitted. Presently available via www.math.fuberlin.de/~biocomp, 2003.

    Google Scholar 

  30. J. Walter. Averaging for Diffusive Fast-Slow Systems with Metastability in the Fast Variable. PhD thesis, Free University Berlin, 2005.

    Google Scholar 

  31. R. Zwanzig. Nonlinear generalized Langevin equations. J. Stat. Phys., 9:215–220, 1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walter, J., Schütte, C. (2006). Conditional Averaging for Diffusive Fast-Slow Systems: A Sketch for Derivation. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_24

Download citation

Publish with us

Policies and ethics