Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Bouhmala. Impact of different graph coarsening schemes on the quality of the partitions. Technical Report RT98/05-01, University of Neuchatel, Department of Computer Science, 1998.

    Google Scholar 

  2. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.

    Google Scholar 

  3. M. Dellnitz, G. Froyland, and O. Junge. The algorithms behind GAIO — set oriented numerical methods for dynamical systems. In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pages 145–174, 2001.

    Google Scholar 

  4. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load balancing. Parallel Computing, 25(7), 789–812, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 75, 293–317, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte. Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl., 315, 39–59, 2000.

    Article  MATH  Google Scholar 

  7. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf. Exploring invariant sets and invariant measures. Chaos, 7(2), 221–228, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal., 36(2), 491–515, 1999.

    Article  MathSciNet  Google Scholar 

  9. M. Dellnitz and O. Junge. Set oriented numerical methods for dynamical systems. In B. Fiedler, G. Iooss, and N. Kopell, editors, Handbook of Dynamical Systems II: Towards Applications, pages 221–264. World Scientific, 2002.

    Google Scholar 

  10. R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph bisections. In D. Hsu, A. Rosenberg, and D. Sotteau, editors, Interconnection Networks and Mapping and Scheduling Parallel Computations, volume 21 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 57–73. AMS, 1995.

    Google Scholar 

  11. R. Elsässer, A. Frommer, B. Monien, and R. Preis. Optimal and alternating-direction loadbalancing schemes. In P. A. et al., editor, Euro-Par’99 Parallel Processing, LNCS 1685, pages 280–290, 1999.

    Google Scholar 

  12. R. Elsässer, B. Monien, and R. Preis. Diffusive load balancing schemes on heterogeneous networks. In 12th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 30–38, 2000.

    Google Scholar 

  13. C. Fiduccia and R. Mattheyses. A linear-time heuristic for improving network partitions. In Proc. IEEE Design Automation Conf., pages 175–181, 1982.

    Google Scholar 

  14. M. Garey and D. Johnson. COMPUTERS AND INTRACTABILITY — A Guide to the Theory of NP-Completeness. Freemann, 1979.

    Google Scholar 

  15. A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering. IBM J. of Research and Development, 41, 171–183, 1997.

    Article  Google Scholar 

  16. B. Hendrickson and R. Leland. The chaco user’s guide: Version 2.0. Technical Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1994.

    Google Scholar 

  17. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc. Supercomputing’ 95. ACM, 1995.

    Google Scholar 

  18. J. Hromkovič and B. Monien. The bisection problem for graphs of degree 4 (configuring transputer systems). In Buchmann, Ganzinger, and Paul, editors, Festschrift zum 60. Geburtstag von Günter Hotz, pages 215–234. Teubner, 1992.

    Google Scholar 

  19. A. Huang, L. Pivka, C. Wu, and M. Franz. Chua’s equation with cubic nonlinearity. Int. J. Bif. Chaos, 6, 1996.

    Google Scholar 

  20. F. Hunt. A monte carlo approach to the approximation of invariant measures. Random Comput. Dynam., 2, 111–133, 1994.

    MATH  MathSciNet  Google Scholar 

  21. O. Junge. An adaptive subdivision technique for the approximation of attractors and invariant measures: Proof of convergence. Dynamical Systems, 16(3), 213–222, 2001.

    MATH  MathSciNet  Google Scholar 

  22. G. Karypis and V. Kumar. METIS Manual, Version 4.0. University of Minnesota, Department of Computer Science, 1998.

    Google Scholar 

  23. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. J. of Parallel and Distributed Computing, 48, 96–129, 1998.

    Article  Google Scholar 

  24. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. on Scientific Computing, 20(1), 1999.

    Google Scholar 

  25. B. Kernighan and S. Lin. An effective heuristic procedure for partitioning graphs. The Bell Systems Technical J., pages 291–307, 1970.

    Google Scholar 

  26. F. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.

    Google Scholar 

  27. B. Monien and R. Diekmann. A local graph partitioning heuristic meeting bisection bounds. In 8th SIAM Conf. on Parallel Processing for Scientific Computing, 1997.

    Google Scholar 

  28. B. Monien and R. Preis. Bisection width of 3-and 4-regular graphs. In 26th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS 2136, pages 524–536, 2001.

    Google Scholar 

  29. B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement for multilevel graph-partitioning. Parallel Computing, 26(12), 1609–1634, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Pellegrini. SCOTCH 3.1 user’s guide. Technical Report 1137-96, LaBRI, University of Bordeaux, 1996.

    Google Scholar 

  31. R. Ponnusamy, N. Mansour, A. Choudhary, and G. Fox. Graph contraction for mapping data on parallel computers: A quality-cost tradeoff. Scientific Programming, 3, 73–82, 1994.

    Google Scholar 

  32. R. Preis. The PARTY Graphpartitioning-Library, User Manual — Version 1.99. Universität Paderborn, Germany, 1998.

    Google Scholar 

  33. R. Preis. Analyses and Design of Efficient Graph Partitioning Methods. Heinz Nixdorf Institut Verlagsschriftenreihe, 2000. Dissertation, Universität Paderborn, Germany.

    MATH  Google Scholar 

  34. S. Park, M. Sener, D. Lu, and K. Schulten. Reaction paths based on mean first-passage times. J. Chem. Phys., 2003.

    Google Scholar 

  35. N. Sensen. Lower bounds and exact algorithms for the graph partitioning problem using multicommodity flows. In Proc. European Symposium on Algorithms, 2001.

    Google Scholar 

  36. A. Sinclair. Algorithms for Random Generation & Counting: A Markov Chain Approach. Progress in Theoretical Computer Science. Birkhäuser, 1993.

    Google Scholar 

  37. C. Walshaw. The Jostle user manual: Version 2.2. University of Greenwich, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dellnitz, M., Molo, M.Hv., Metzner, P., Preis, R., Schütte, C. (2006). Graph Algorithms for Dynamical Systems. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_23

Download citation

Publish with us

Policies and ethics