Advertisement

Graph Algorithms for Dynamical Systems

  • Michael Dellnitz
  • Mirko Hessel-von Molo
  • Philipp Metzner
  • Robert Preis
  • Christof Schütte

Keywords

Short Path Invariant Measure Edge Weight Transfer Operator External Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bou98]
    N. Bouhmala. Impact of different graph coarsening schemes on the quality of the partitions. Technical Report RT98/05-01, University of Neuchatel, Department of Computer Science, 1998.Google Scholar
  2. [CLR90]
    T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.Google Scholar
  3. [DFJ01]
    M. Dellnitz, G. Froyland, and O. Junge. The algorithms behind GAIO — set oriented numerical methods for dynamical systems. In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pages 145–174, 2001.Google Scholar
  4. [DFM99]
    R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load balancing. Parallel Computing, 25(7), 789–812, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [DH97]
    M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 75, 293–317, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [DH*00]
    P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte. Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl., 315, 39–59, 2000.zbMATHCrossRefGoogle Scholar
  7. [DH*97]
    M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf. Exploring invariant sets and invariant measures. Chaos, 7(2), 221–228, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [DJ99]
    M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal., 36(2), 491–515, 1999.MathSciNetCrossRefGoogle Scholar
  9. [DJ02]
    M. Dellnitz and O. Junge. Set oriented numerical methods for dynamical systems. In B. Fiedler, G. Iooss, and N. Kopell, editors, Handbook of Dynamical Systems II: Towards Applications, pages 221–264. World Scientific, 2002.Google Scholar
  10. [DMP95]
    R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph bisections. In D. Hsu, A. Rosenberg, and D. Sotteau, editors, Interconnection Networks and Mapping and Scheduling Parallel Computations, volume 21 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 57–73. AMS, 1995.Google Scholar
  11. [EF*99]
    R. Elsässer, A. Frommer, B. Monien, and R. Preis. Optimal and alternating-direction loadbalancing schemes. In P. A. et al., editor, Euro-Par’99 Parallel Processing, LNCS 1685, pages 280–290, 1999.Google Scholar
  12. [EMP00]
    R. Elsässer, B. Monien, and R. Preis. Diffusive load balancing schemes on heterogeneous networks. In 12th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 30–38, 2000.Google Scholar
  13. [FM82]
    C. Fiduccia and R. Mattheyses. A linear-time heuristic for improving network partitions. In Proc. IEEE Design Automation Conf., pages 175–181, 1982.Google Scholar
  14. [GJ79]
    M. Garey and D. Johnson. COMPUTERS AND INTRACTABILITY — A Guide to the Theory of NP-Completeness. Freemann, 1979.Google Scholar
  15. [Gup97]
    A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering. IBM J. of Research and Development, 41, 171–183, 1997.CrossRefGoogle Scholar
  16. [HL94]
    B. Hendrickson and R. Leland. The chaco user’s guide: Version 2.0. Technical Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1994.Google Scholar
  17. [HL95]
    B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc. Supercomputing’ 95. ACM, 1995.Google Scholar
  18. [HM92]
    J. Hromkovič and B. Monien. The bisection problem for graphs of degree 4 (configuring transputer systems). In Buchmann, Ganzinger, and Paul, editors, Festschrift zum 60. Geburtstag von Günter Hotz, pages 215–234. Teubner, 1992.Google Scholar
  19. [HP*96]
    A. Huang, L. Pivka, C. Wu, and M. Franz. Chua’s equation with cubic nonlinearity. Int. J. Bif. Chaos, 6, 1996.Google Scholar
  20. [Hun94]
    F. Hunt. A monte carlo approach to the approximation of invariant measures. Random Comput. Dynam., 2, 111–133, 1994.zbMATHMathSciNetGoogle Scholar
  21. [Jun01]
    O. Junge. An adaptive subdivision technique for the approximation of attractors and invariant measures: Proof of convergence. Dynamical Systems, 16(3), 213–222, 2001.zbMATHMathSciNetGoogle Scholar
  22. [KK98a]
    G. Karypis and V. Kumar. METIS Manual, Version 4.0. University of Minnesota, Department of Computer Science, 1998.Google Scholar
  23. [KK98b]
    G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. J. of Parallel and Distributed Computing, 48, 96–129, 1998.CrossRefGoogle Scholar
  24. [KK99]
    G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. on Scientific Computing, 20(1), 1999.Google Scholar
  25. [KL70]
    B. Kernighan and S. Lin. An effective heuristic procedure for partitioning graphs. The Bell Systems Technical J., pages 291–307, 1970.Google Scholar
  26. [Lei92]
    F. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.Google Scholar
  27. [MD97]
    B. Monien and R. Diekmann. A local graph partitioning heuristic meeting bisection bounds. In 8th SIAM Conf. on Parallel Processing for Scientific Computing, 1997.Google Scholar
  28. [MP01]
    B. Monien and R. Preis. Bisection width of 3-and 4-regular graphs. In 26th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS 2136, pages 524–536, 2001.Google Scholar
  29. [MPD00]
    B. Monien, R. Preis, and R. Diekmann. Quality matching and local improvement for multilevel graph-partitioning. Parallel Computing, 26(12), 1609–1634, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [Pel96]
    F. Pellegrini. SCOTCH 3.1 user’s guide. Technical Report 1137-96, LaBRI, University of Bordeaux, 1996.Google Scholar
  31. [PM*94]
    R. Ponnusamy, N. Mansour, A. Choudhary, and G. Fox. Graph contraction for mapping data on parallel computers: A quality-cost tradeoff. Scientific Programming, 3, 73–82, 1994.Google Scholar
  32. [Pre98]
    R. Preis. The PARTY Graphpartitioning-Library, User Manual — Version 1.99. Universität Paderborn, Germany, 1998.Google Scholar
  33. [Pre00]
    R. Preis. Analyses and Design of Efficient Graph Partitioning Methods. Heinz Nixdorf Institut Verlagsschriftenreihe, 2000. Dissertation, Universität Paderborn, Germany.zbMATHGoogle Scholar
  34. [PS*03]
    S. Park, M. Sener, D. Lu, and K. Schulten. Reaction paths based on mean first-passage times. J. Chem. Phys., 2003.Google Scholar
  35. [Sen01]
    N. Sensen. Lower bounds and exact algorithms for the graph partitioning problem using multicommodity flows. In Proc. European Symposium on Algorithms, 2001.Google Scholar
  36. [Sin93]
    A. Sinclair. Algorithms for Random Generation & Counting: A Markov Chain Approach. Progress in Theoretical Computer Science. Birkhäuser, 1993.Google Scholar
  37. [Wal00]
    C. Walshaw. The Jostle user manual: Version 2.2. University of Greenwich, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Dellnitz
    • 1
  • Mirko Hessel-von Molo
    • 1
  • Philipp Metzner
    • 2
  • Robert Preis
    • 1
  • Christof Schütte
    • 2
  1. 1.Institute for MathematicsUniversity of PaderbornPaderborn
  2. 2.Department of MathematicsFreie Universität BerlinBerlin

Personalised recommendations